Nanoelectronic enabled chronic quantification of neurovascular coupling
纳米电子技术实现了神经血管耦合的长期定量
基本信息
- 批准号:10115788
- 负责人:
- 金额:$ 17.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-12-18 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAffectAnesthesia proceduresAngiotensin IIAnimalsBlood - brain barrier anatomyBlood PressureBrainCerebrovascular CirculationCerebrovascular DisordersChronicCicatrixClinicalCouplingDependenceDevelopmentDisease ProgressionDisease modelDoseElectrodesFunctional Magnetic Resonance ImagingGoalsHealthHumanHypertensionImageImpairmentInfarctionInterventionIschemiaKnowledgeLocationMapsMeasurementMeasuresMetabolicModelingModernizationMusNatureNerve DegenerationNeuronsNormal tissue morphologyOperative Surgical ProceduresOptical MethodsOpticsOxygenPatientsPatternPhasePrevention strategyResearchRisk FactorsRoleSeveritiesSeverity of illnessStimulusStrokeStructureSurfaceSystemTechniquesTherapeuticThrombosisTissuesawakebrain tissuecerebrovasculareffective therapyflexibilityhemodynamicshigh resolution imagingimaging systemimplantationimprovedinnovationlongitudinal animal studymouse modelmultimodalitynanoelectronicsneuroimagingneurophysiologyneurovascular couplingnoveloptical imagingphosphorescencepreventive interventionrelating to nervous systemresponsespatiotemporalstroke modelstroke patienttemporal measurement
项目摘要
PROJECT SUMMARY:
Neurovascular coupling, the close spatial and temporal relationship between neural activity and hemodynamics
that regulates delivery of metabolic substrates to meet the demands of neuronal activation, is crucial to the
structural and functional integrity of the brain. It also forms the basis of modern neuroimaging techniques such
as fMRI that use hemodynamic responses to map brain function. Despite of its significant fundamental and
clinical importance, the quantitative relationship between changes in hemodynamics and neural activity
including the spatial extent of the coupling remains rudimentary; the quantitative effects of cerebrovascular
diseases on neurovascular coupling and their dependence on the severity and progression of the diseases are
understudied. Such knowledge gaps impose limitations on the precise clinical interpretation of widely applied
neuroimaging techniques, and the therapeutic opportunities to clearly target the impairment of neurovascular
coupling for treatment. The objective of this project is to provide spatiotemporally resolved quantification of
neurovascular coupling in health and during the progression of stroke and hypertension. The hypothesis is that
neurovascular coupling can be quantified and tracked by applying a novel chronic multimodal neural platform
that simultaneously map both neural activity and hemodynamic parameters with high spatial- and temporal
resolution over weeks to months in behaving animals. This is enabled by our recent development of a novel
type of ultraflexible nanoelectronic neural electrodes that provide spatially resolved neural activity recording
with seamless tissue integration and chronic optical access. We will combine these electrodes with a novel
functional optical imaging system that simultaneously images and quantifies the full-field cerebral blood flow
and oxygen tension (pO2). We will apply this multimodal system in behaving mice to quantify neurovascular
coupling including the spatiotemporal pattern, the functional form, and the alteration due to progressing
ischemia, hypertension and both. The application is highly innovative, in the applicant’s opinion, because it
integrates technical advancements at multiple fronts to provide a highly novel and powerful combination of
techniques that permits quantification of neurovascular coupling in previously unattainable temporal and spatial
regimes. The application is significant, because it is expected to have broad translational importance both in
the precise clinical interpretation of neuroimaging techniques, and in the intervention of cerebrovascular
diseases where neurovascular coupling is known to be severely compromised. The long-term goal of this
project is to understand the impairment of neurovascular coupling in stroke and hypertension with mechanisms
similar to those occurred in human patient in order to unravel the mechanism of hypertension as the leading
risk factor for stroke, and to improve prevention and intervention strategies for hypertensive stroke patients.
项目概要:
神经血管耦合,神经活动与血流动力学之间密切的时空关系
调节代谢底物的传递以满足神经激活的需求,对于
它也构成了现代神经影像技术的基础。
作为使用血流动力学反应来绘制大脑功能的功能磁共振成像,尽管它具有重要的基础和功能。
临床重要性,血流动力学变化和神经活动之间的定量关系
包括耦合的空间范围仍然处于初级阶段;
疾病对神经血管耦合的影响及其对疾病严重程度和进展的依赖性
这种知识差距限制了广泛应用的精确临床解释。
神经影像技术,以及明确针对神经血管损伤的治疗机会
该项目的目标是提供时空解析的量化。
健康以及中风和高血压进展期间的神经血管耦合。
通过应用新型慢性多模式神经平台可以量化和跟踪神经血管耦合
同时映射具有高空间和时间的神经活动和血流动力学参数
我们最近开发的一部小说使我们能够在几周到几个月内解决动物的行为问题。
一种超柔性纳米电子神经电极,可提供空间分辨的神经活动记录
我们将把这些电极与一种新颖的技术结合起来。
同时对全视野脑血流进行成像和量化的功能光学成像系统
我们将在行为小鼠中应用这种多模式系统来量化神经血管。
耦合包括时空模式、功能形式以及由于进展而发生的变化
申请人认为,该申请具有高度创新性,因为它可以治疗缺血、高血压和两者。
集成了多个前沿的技术进步,提供了一种高度新颖且强大的组合
允许在以前无法实现的时间和空间中量化神经血管耦合的技术
该应用非常重要,因为预计它在两个方面都具有广泛的转化重要性。
神经影像技术的精确临床解释以及脑血管干预
已知神经血管耦合严重受损的疾病。
该项目旨在了解中风和高血压中神经血管耦合的损害及其机制
与人类患者发生的情况相似,以揭示高血压作为主要疾病的机制
脑卒中的危险因素,并改善高血压脑卒中患者的预防和干预策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lan Luan其他文献
Lan Luan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lan Luan', 18)}}的其他基金
Optimizing ultraflexible electrodes and integrated electronics for high-resolution, large-scale intraspinal recording and modulation
优化超柔性电极和集成电子器件以实现高分辨率、大规模椎管内记录和调制
- 批准号:
10617092 - 财政年份:2023
- 资助金额:
$ 17.8万 - 项目类别:
Admin Supp for Longitudinal multimodal mapping to decipher the neurovascular impact of microinfarcts
纵向多模式映射的管理补充,以破译微梗塞对神经血管的影响
- 批准号:
10166211 - 财政年份:2020
- 资助金额:
$ 17.8万 - 项目类别:
Longitudinal multimodal mapping to decipher the neurovascular impact of microinfarcts
纵向多模态映射破译微梗塞对神经血管的影响
- 批准号:
10317128 - 财政年份:2019
- 资助金额:
$ 17.8万 - 项目类别:
Longitudinal multimodal mapping to decipher the neurovascular impact of microinfarcts
纵向多模态映射破译微梗塞对神经血管的影响
- 批准号:
10556319 - 财政年份:2019
- 资助金额:
$ 17.8万 - 项目类别:
Longitudinal multimodal mapping to decipher the neurovascular impact of microinfarcts
纵向多模态映射破译微梗塞对神经血管的影响
- 批准号:
10076240 - 财政年份:2019
- 资助金额:
$ 17.8万 - 项目类别:
Longitudinal multimodal mapping to decipher the neurovascular impact of microinfarcts
纵向多模态映射破译微梗塞对神经血管的影响
- 批准号:
10162677 - 财政年份:2019
- 资助金额:
$ 17.8万 - 项目类别:
Longitudinal multimodal mapping to decipher the neurovascular impact of microinfarcts
纵向多模态映射破译微梗塞对神经血管的影响
- 批准号:
10786315 - 财政年份:2019
- 资助金额:
$ 17.8万 - 项目类别:
Longitudinal multimodal mapping to decipher the neurovascular impact of microinfarcts
纵向多模态映射破译微梗塞对神经血管的影响
- 批准号:
10542275 - 财政年份:2019
- 资助金额:
$ 17.8万 - 项目类别:
Longitudinal multimodal mapping to decipher the neurovascular impact of microinfarcts
纵向多模态映射破译微梗塞对神经血管的影响
- 批准号:
9762529 - 财政年份:2019
- 资助金额:
$ 17.8万 - 项目类别:
Nanoelectronic enabled chronic quantification of neurovascular coupling
纳米电子技术实现了神经血管耦合的长期定量
- 批准号:
10064712 - 财政年份:2018
- 资助金额:
$ 17.8万 - 项目类别:
相似国自然基金
基于lncRNA NONHSAT042241/hnRNP D/β-catenin轴探讨雷公藤衍生物(LLDT-8)对类风湿关节炎滑膜成纤维细胞功能影响及机制研究
- 批准号:82304988
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
针刺手法和参数对针刺效应启动的影响及其机制
- 批准号:82305416
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二仙汤影响肾上腺皮质-髓质激素分泌及调控下丘脑温度感受器以缓解“天癸竭”潮热的研究
- 批准号:82374307
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
固定翼海空跨域航行器出水稳定性与流体动力载荷影响机制
- 批准号:52371327
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
经济制裁对跨国企业海外研发网络建构的影响:基于被制裁企业的视角
- 批准号:72302155
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Real-time Prediction of Adverse Outcomes After Surgery
实时预测手术后不良后果
- 批准号:
10724048 - 财政年份:2023
- 资助金额:
$ 17.8万 - 项目类别:
Dodecafluoropentane emulsion (DDFPe), NanO2™ as Cerebroprotectant in Ischemic Stroke
十二氟戊烷乳液 (DDFPe)、NanO2™ 作为缺血性中风的脑保护剂
- 批准号:
10591442 - 财政年份:2023
- 资助金额:
$ 17.8万 - 项目类别:
Reagentless Sensor Technologies For Continuous Monitoring of Heart Failure Biomarkers
用于连续监测心力衰竭生物标志物的无试剂传感器技术
- 批准号:
10636089 - 财政年份:2023
- 资助金额:
$ 17.8万 - 项目类别:
Koli: A non-surgical solution for gallstone disease
Koli:胆结石疾病的非手术解决方案
- 批准号:
10698949 - 财政年份:2023
- 资助金额:
$ 17.8万 - 项目类别:
PHEnylephrine versus NOrepinephrine in Major NONcardiac surgery (PHENOMeNON): Foundational Studies for a Pragmatic Randomized Clinical Trial.
PHEnylephrine 与 NOrepinephrine 在主要非心脏手术 (PHENOMeNON) 中的比较:实用随机临床试验的基础研究。
- 批准号:
10570637 - 财政年份:2023
- 资助金额:
$ 17.8万 - 项目类别: