Robust IMPT with automated beam orientation and scanning spot optimization
具有自动光束定向和扫描点优化功能的稳健 IMPT
基本信息
- 批准号:10112842
- 负责人:
- 金额:$ 36.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAlgorithmsClinicClinicalComplexDataDistalDoseEquilibriumFaceFeedbackGoalsIndividualIntensity modulated proton therapyManualsMapsMethodsModalityModelingNormal tissue morphologyPatientsPhysicsPositioning AttributeProtonsResearch PersonnelRoentgen RaysScanningSchemeSpottingsSystemTechniquesTestingTimeTreatment EfficacyUncertaintyValidationVariantX-Ray Therapybasecancer therapyclinical translationcombinatorialcostdosimetryhigh dimensionalityimprovedinnovationnovelproton beamproton therapytreatment optimizationtreatment planning
项目摘要
Proton beams have emerged as an appealing new modality for cancer therapy. With continuing clinical
adoption and technical advances in the past two decades, intensity modulated proton therapy (IMPT) using
scanning pencil beams has been established as the desired delivery method to fully take advantage of proton
physics. Thus far, IMPT optimization has mainly focused on modulating the scanning spots with manually
selected beam angles. At the same time, for intensity modulated X-ray therapy (IMXT), researchers including
the PI's group have demonstrated that superior dosimetry can be attained with integrated beam orientation
optimization (BOO). Nevertheless, the benefit of BOO has not extended to IMPT due to the paramount
computational challenges of solving the integrated BOO and scanning spot optimization (SSO) problem, which
by itself is a higher-dimensional problem than the fluence map optimization problem in IMXT. Currently, IMPT
BOO is considered a combinatorial problem that is not mathematically tractable with increasing problem size.
Despite the computational challenge, compared with IMXT, BOO is more important for IMPT for the following
reasons. First, the optimal number and orientations of beams for IMPT have not been known. While the BOO
problem in X-ray therapy is often circumvented in practice by using single or multiple arc beams, the same
technique applied to IMPT would increase the volumes of normal tissue being irradiated by the entrance dose
and would therefore start losing its low dose sparing advantage. Furthermore, because IMPT beam time is
restrictive, using many beams in a treatment fraction is operationally impractical. Subsequently, IMPT plan
quality is heavily influenced by each of the few selected beams. Yet, manual IMPT beam orientation selection
in the available non-coplanar solution space is unintuitive and ineffective. Second, IMPT plans are highly
degenerate with different combinations of beams, spots and spot sparsity resulting in similar dosimetry but
vastly different robustness to uncertainties. Existing worst-case optimization methods are a suboptimal
compromise between the dosimetry and robustness. It is hypothesized that both the dosimetry and robustness
will be significantly improved by integrating BOO in IMPT optimization. It is then hypothesized that the
integrated optimization problem can be formulated as a group sparsity optimization problem with efficient
solutions. To test these hypotheses, the following aims are proposed. Aim 1. Develop automated beam
orientation and sparse spot optimization for IMPT. Aim 2. Develop fraction-variant IMPT. Aim 3. Incorporate
sensitivity regularization (SenR) for robust beam orientation and scanning spot optimization. Aim 4. Validation
of the integrated BOO, SSO and robustness optimization framework. The first three aims will be mainly
performed at UCLA with the clinical and physics input from UPENN. The last aim will be mainly performed at
UPENN. Depending on the feedback, UCLA will provide technical support to use and validate the proposed
treatment planning system.
质子束已成为一种有吸引力的癌症治疗新方式。随着临床的持续
过去二十年的采用和技术进步,调强质子治疗(IMPT)使用
扫描笔形束已被确定为充分利用质子的理想传输方法
物理。到目前为止,IMPT 优化主要集中在手动调节扫描点上。
选定的光束角度。与此同时,对于调强 X 射线治疗 (IMXT),研究人员包括
PI 小组已经证明,通过集成射束定向可以实现卓越的剂量测定
优化(BOO)。然而,由于最重要的原因,BOO 的好处并未扩展到 IMPT。
解决集成 BOO 和扫描点优化 (SSO) 问题的计算挑战,
它本身是一个比 IMXT 中的注量图优化问题更高维的问题。目前,IMPT
BOO 被认为是一个组合问题,随着问题规模的增加,在数学上难以处理。
尽管存在计算挑战,但与 IMXT 相比,BOO 对于以下方面的 IMPT 更为重要:
原因。首先,IMPT 的最佳光束数量和方向尚不清楚。虽然嘘声
在实践中,X 射线治疗中的问题通常可以通过使用单个或多个弧束来解决,同样的
应用于 IMPT 的技术将增加入口剂量照射的正常组织的体积
因此将开始失去其低剂量节省优势。此外,由于 IMPT 波束时间为
由于限制性的,在一个治疗部分中使用许多光束在操作上是不切实际的。随后,IMPT计划
质量很大程度上受到少数选定光束的影响。然而,手动 IMPT 光束方向选择
在可用的非共面解决方案空间中是不直观且无效的。其次,IMPT计划高度
光束、光斑和光斑稀疏度的不同组合会退化,导致相似的剂量测定,但
对不确定性的鲁棒性差异很大。现有的最坏情况优化方法不是最理想的
剂量测定和鲁棒性之间的折衷。假设剂量测定和鲁棒性
通过将 BOO 集成到 IMPT 优化中,将得到显着改善。然后假设
集成优化问题可以表示为一个高效的群稀疏优化问题
解决方案。为了检验这些假设,提出了以下目标。目标1.开发自动化光束
IMPT 的方向和稀疏点优化。目标 2. 开发分数变体 IMPT。目标 3. 合并
灵敏度正则化 (SenR),用于稳健的光束定向和扫描点优化。目标 4. 验证
集成的 BOO、SSO 和鲁棒性优化框架。前三个目标主要是
在 UCLA 进行,并得到 UPENN 的临床和物理输入。最后一个目标将主要执行于
宾夕法尼亚大学。根据反馈,加州大学洛杉矶分校将提供技术支持以使用和验证拟议的
治疗计划系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ke Sheng其他文献
Ke Sheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ke Sheng', 18)}}的其他基金
Development of A High Throughput Image-Guided IMRT System for Preclinical Research
开发用于临床前研究的高通量图像引导 IMRT 系统
- 批准号:
10434948 - 财政年份:2021
- 资助金额:
$ 36.42万 - 项目类别:
Development of A High Throughput Image-Guided IMRT System forPreclinical Research
开发用于临床前研究的高通量图像引导 IMRT 系统
- 批准号:
10827345 - 财政年份:2021
- 资助金额:
$ 36.42万 - 项目类别:
Development of A High Throughput Image-Guided IMRT System for Preclinical Research
开发用于临床前研究的高通量图像引导 IMRT 系统
- 批准号:
10317441 - 财政年份:2021
- 资助金额:
$ 36.42万 - 项目类别:
Robust IMPT with automated beam orientation and scanning spot optimization
具有自动光束定向和扫描点优化功能的稳健 IMPT
- 批准号:
10762796 - 财政年份:2019
- 资助金额:
$ 36.42万 - 项目类别:
Robust IMPT with automated beam orientation and scanning spot optimization
具有自动光束定向和扫描点优化功能的稳健 IMPT
- 批准号:
10356142 - 财政年份:2019
- 资助金额:
$ 36.42万 - 项目类别:
Development of intensity modulated radiation therapy for small animal research
用于小动物研究的调强放射治疗的发展
- 批准号:
9434233 - 财政年份:2017
- 资助金额:
$ 36.42万 - 项目类别:
Motion Management of Pancreatic Cancer in MRI-Guided Radiotherapy
MRI 引导放射治疗中胰腺癌的运动管理
- 批准号:
9023515 - 财政年份:2015
- 资助金额:
$ 36.42万 - 项目类别:
Motion Management of Pancreatic Cancer in MRI-Guided Radiotherapy
MRI 引导放射治疗中胰腺癌的运动管理
- 批准号:
9023515 - 财政年份:2015
- 资助金额:
$ 36.42万 - 项目类别:
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
- 批准号:62306090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度海表反照率遥感算法研究
- 批准号:42376173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
- 批准号:62371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
ARISE (Achieving Routine Intervention and Screening for Emotional health)
ARISE(实现情绪健康的常规干预和筛查)
- 批准号:
10655877 - 财政年份:2023
- 资助金额:
$ 36.42万 - 项目类别:
Hybrid Intelligence for Trustable Diagnosis And Patient Management of Prostate Cancer (HIT-PIRADS)
用于前列腺癌可信诊断和患者管理的混合智能 (HIT-PIRADS)
- 批准号:
10611212 - 财政年份:2023
- 资助金额:
$ 36.42万 - 项目类别:
GARDE: Scalable Clinical Decision Support for Individualized Cancer Risk Management
GARDE:个性化癌症风险管理的可扩展临床决策支持
- 批准号:
10741231 - 财政年份:2023
- 资助金额:
$ 36.42万 - 项目类别:
Impact of biofeedback and task-specific training with a robotic hand orthosis on voluntary muscle modulation for rehabilitation post-stroke
使用机器人手矫形器进行生物反馈和特定任务训练对中风后康复随意肌调节的影响
- 批准号:
10751274 - 财政年份:2023
- 资助金额:
$ 36.42万 - 项目类别: