The Evolution of PGD addiction in Human Pancreatic Cancer
人类胰腺癌 PGD 成瘾的演变
基本信息
- 批准号:10054956
- 负责人:
- 金额:$ 1.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-12-01 至 2021-01-04
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcetyl Coenzyme ABackBlood CirculationBypassCancer EtiologyCatalysisCell physiologyCellsCessation of lifeChemicalsChromatinConsumptionConversion disorderCoupledDNA SequenceDataDependenceDiagnosisDiffuseDiseaseDisease ProgressionDisseminated Malignant NeoplasmDistant MetastasisEnzymesEpigenetic ProcessEvolutionFASN geneFatty AcidsG6PD geneGene ExpressionGenesGenetic TranscriptionGlucoseGrowthHumanHypoglycemiaKnowledgeLeadLeftLinkLiverLungMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of pancreasMetabolicMetabolic PathwayMetabolismModificationMutateNADPNamesNeoplasm MetastasisOxidesPancreatic Ductal AdenocarcinomaPathway interactionsPatientsPentosephosphate PathwayPentosesPhosphogluconate DehydrogenasePreclinical TestingPrimary NeoplasmProductionReactionRecurrenceRecyclingResearch DesignResearch MethodologyResistanceRouteSeriesSpecificityTXNIP geneTestingTissuesWestern WorldWorkaddictioncancer cellcofactordesigneffective therapyepigenomeepigenomicsexperimental studyfatty acid biosynthesisfatty acid metabolismfitnessgenetic selectionhistone acetyltransferaseindividual patientinsightnon-geneticoverexpressionpancreatic cancer cellspancreatic neoplasmsmall molecule inhibitorsugartherapeutic targettherapy resistanttranscriptometreatment strategytumor growthtumorigenesis
项目摘要
PROJECT SUMMARY (ABSTRACT)
Distant metastasis is the cause of most cancer deaths. This is particularly true for pancreatic cancer. These
patients develop hundreds to thousands of metastases that appear suddenly and progress rapidly to fill the
liver and lungs. This stage of the disease is rapidly lethal, poorly understood, and grossly understudied.
Long-term Objectives: Characterize what drives and/or accelerates the metastatic stage of pancreatic cancer
in patients, and use this knowledge to design new and effective treatment strategies.
Research Design: This proposal is designed to deeply characterize how a metabolic enzyme named PGD
drives pancreatic cancer metastasis. We recently discovered that sugar (glucose) activates PGD, and once
PGD is activated it strongly stimulates metastatic tumor growth. Understanding how cancer cells use glucose
to activate PGD and how PGD then promotes tumor growth is important: it could lead to the first effective
treatment strategies against the most common and most lethal stage of disease progression.
Research Methods: Experiments will use a powerful set of metastatic pancreatic cancer cells and tissues that
were collected from individual patients who died of the disease. Unique three-dimensional experimental
platforms will allow us to investigate how these cancers learned to form metastatic tumors in the patients.
Experiments will specifically focus on how the metastatic cells process glucose into metabolites that activate
the PGD enzyme, and how the activated PGD enzyme is then able to enhance metastatic tumor growth.
Aim 1: Determine how glucose fuels high PGD catalytic activity in distant metastases.
Aim 1 will investigate how an unusual series of metabolic reactions convert glucose into metabolites that
activate PGD. Our recent work was the first to detect these reactions in humans. That is because they are only
operational in the metastatic cancer cells. Their function is to support PGD-driven metastasis.
Aim 2: Define the mechanism whereby PGD is constitutively activated in distant metastases.
Aim 2 will investigate how activated PGD is able to accelerate the rates of both glucose consumption and fatty
acid biosynthesis in the metastatic cancer cells. This not only strongly promotes metastatic tumor growth, but
also maintains PGD in a perpetually activated state that cannot be switched off in the presence of glucose.
Aim 3: Investigate how PGD reprograms the epigenome to activate the metastatic transcriptome.
Aim 3 will investigate how PGD is able to control the “epigenome”, which refers to small chemical modifications
within chromatin that regulate expression of the genes encoded in the DNA sequence (the “transcriptome”).
PGD reprograms the pancreatic cancer epigenome by accelerating glucose consumption. The metastatic cells
break the extra glucose down into the smaller epigenetic chemicals. The chemicals are then used to increase
expression of numerous genes that enhance metastatic tumor growth and bestow treatment resistance.
项目概要(摘要)
远处转移是大多数癌症死亡的原因,对于胰腺癌尤其如此。
患者会突然出现数百至数千个转移瘤,并迅速进展以填补
该疾病的这一阶段会迅速致死,但人们对此知之甚少,研究也严重不足。
长期目标:描述驱动和/或加速胰腺癌转移阶段的因素
并利用这些知识来设计新的有效的治疗策略。
研究设计:该提案旨在深入描述一种名为 PGD 的代谢酶如何
我们最近发现糖(葡萄糖)会激活 PGD,并且曾经有一次。
PGD 被激活后会强烈刺激肿瘤生长。了解癌细胞如何利用葡萄糖。
激活 PGD 以及 PGD 如何促进肿瘤生长非常重要:它可能导致第一个有效的治疗
针对疾病进展最常见和最致命阶段的治疗策略。
研究方法:实验将使用一组强大的转移性胰腺癌细胞和组织,
是从死于该疾病的个别患者身上收集的。独特的三维实验。
平台将使我们能够研究这些癌症如何在患者体内形成转移性肿瘤。
实验将特别关注转移细胞如何将葡萄糖加工成代谢物,从而激活
PGD 酶,以及激活的 PGD 酶如何能够促进转移性肿瘤的生长。
目标 1:确定葡萄糖如何在远处转移中促进高 PGD 催化活性。
目标 1 将研究一系列不寻常的代谢反应如何将葡萄糖转化为代谢物
我们最近的工作首次在人类中检测到这些反应。
它们在转移性癌细胞中发挥作用,支持 PGD 驱动的转移。
目标 2:定义 PGD 在远处转移中持续激活的机制。
目标 2 将研究活化的 PGD 如何加速葡萄糖消耗和脂肪酸的消耗速度
转移性癌细胞中的酸生物合成,这不仅强烈促进转移性肿瘤的生长,而且
它还使 PGD 保持在永久激活状态,在葡萄糖存在的情况下无法关闭。
目标 3:研究 PGD 如何重新编程表观基因组以激活转移转录组。
目标 3 将研究 PGD 如何控制“表观基因组”,即微小的化学修饰
染色质内调节 DNA 序列(“转录组”)中编码的基因的表达。
PGD 通过加速转移细胞的葡萄糖消耗来重新编程胰腺癌表观基因组。
将多余的葡萄糖分解成更小的表观遗传化学物质,然后使用这些化学物质来增加。
许多基因的表达可增强转移性肿瘤的生长并赋予治疗抵抗力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oliver Gene McDonald其他文献
Oliver Gene McDonald的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oliver Gene McDonald', 18)}}的其他基金
THE EVOLUTION OF PGD ADDICTION IN HUMAN PANCREATIC CANCER
人类胰腺癌 PGD 成瘾的演变
- 批准号:
10543775 - 财政年份:2018
- 资助金额:
$ 1.81万 - 项目类别:
THE EVOLUTION OF PGD ADDICTION IN HUMAN PANCREATIC CANCER
人类胰腺癌 PGD 成瘾的演变
- 批准号:
10307627 - 财政年份:2018
- 资助金额:
$ 1.81万 - 项目类别:
THE EVOLUTION OF PGD ADDICTION IN HUMAN PANCREATIC CANCER
人类胰腺癌 PGD 成瘾的演变
- 批准号:
10328829 - 财政年份:2018
- 资助金额:
$ 1.81万 - 项目类别:
相似国自然基金
乙酰辅酶A合成酶2(ACSS2)调控内侧前额叶皮层神经元的活性在抑郁发病中的作用及机制研究
- 批准号:82301698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
乙酰磷酸通过调节乙酰辅酶A的合成影响大肠杆菌甲氧苄啶耐药性的分子机制研究
- 批准号:32370193
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
过氧化物酶体β-氧化通过乙酰辅酶A调控过氧化物酶体稳态的分子机制研究
- 批准号:32370738
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
乙酰辅酶A合成酶点突变在青蒿素类药物抗性中的作用及机制研究
- 批准号:32370543
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
PRDM16 regulation of metabolism in the intestinal stem cell niche
PRDM16对肠道干细胞生态位代谢的调节
- 批准号:
10553635 - 财政年份:2020
- 资助金额:
$ 1.81万 - 项目类别:
PRDM16 regulation of metabolism in the intestinal stem cell niche
PRDM16对肠道干细胞生态位代谢的调节
- 批准号:
9977542 - 财政年份:2020
- 资助金额:
$ 1.81万 - 项目类别:
PRDM16 regulation of metabolism in the intestinal stem cell niche
PRDM16对肠道干细胞生态位代谢的调节
- 批准号:
10853562 - 财政年份:2020
- 资助金额:
$ 1.81万 - 项目类别:
THE EVOLUTION OF PGD ADDICTION IN HUMAN PANCREATIC CANCER
人类胰腺癌 PGD 成瘾的演变
- 批准号:
10307627 - 财政年份:2018
- 资助金额:
$ 1.81万 - 项目类别:
THE EVOLUTION OF PGD ADDICTION IN HUMAN PANCREATIC CANCER
人类胰腺癌 PGD 成瘾的演变
- 批准号:
10543775 - 财政年份:2018
- 资助金额:
$ 1.81万 - 项目类别: