Discovery of bacterial defense and phage counter-defense strategies
细菌防御和噬菌体反防御策略的发现
基本信息
- 批准号:10049809
- 负责人:
- 金额:$ 49.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:Antibiotic ResistanceAntibioticsBacteriaBacterial InfectionsBacteriophage lambdaBacteriophagesBasic ScienceBiological AssayBiologyCRISPR/Cas technologyCell SurvivalDNADataDatabasesDrug resistanceEcosystemEscherichia coliEvolutionGenesGeneticGenomeGenomic IslandsGenomicsHorizontal Gene TransferHumanHuman MicrobiomeImmuneImmunityInfectionKnowledgeLibrariesLinkMetagenomicsMethodsModificationMolecularMulti-Drug ResistanceMutationNatureOpen Reading FramesOutcomePathogenesisPhenotypePlasmidsProphagesProteinsRaceResistanceResourcesSchemeSourceSurveysSystemTechniquesTestingTherapeuticTimeToxinVirulenceVirulence Factorsalpha Toxinarmbaseconventional therapyflexibilitygain of functionhuman pathogeninfectious disease treatmentinhibitor/antagonistinsightmetagenomemicrobialmolecular arraynovelnovel strategiespathogenreceptorresistance generesponsesuccess
项目摘要
PROJECT SUMMARY
Bacteria encode a diverse array of molecular systems to defend against infecting phages. In response,
phages have devised many counter-defense strategies to overcome this immunity and re-establish infection.
Mounting evidence suggests that most bacterial defense systems and phage counter-defenses in nature have
not been identified. This is a major knowledge gap because the interplay between these systems often
determines whether a phage successfully infects its bacterial host. These phage infections, in turn, have major
impacts on the evolution and treatment of infectious disease. For instance, pathogenesis in bacteria often
evolves due to the integration of a prophage that expresses a toxin or other virulence factor. At the same time,
phages are increasingly viewed as potential therapeutics to treat bacterial infections, especially in cases where
multi-drug resistance renders conventional treatments unsuccessful. Thus, it is important to better understand
the natural diversity of bacterial defense and phage counter-defense systems. To meet this need, we will devise
new high-throughput functional selections to find defense and counter-defense systems in microbial ecosystems
and in libraries of synthesized phage open reading frames. This functional approach does not rely on sequence
similarity to predict defense and counter-defense systems, so overcomes the limitations of conventional,
homology-based discovery methods. This strategy, therefore, is expected to identify many new defense and
counter-defense genes beyond what is known currently. It is especially valuable for examining functions encoded
in phage genomes and bacterial genomic islands, as most genes from these sources are of unknown function.
Since nearly all bacteria should encode anti-phage defense systems, and almost all phages will encode counter-
defense strategies, we expect to make many new discoveries. Because these discoveries are predicted to be
novel, we will use a combination of genetic and functional assays to describe their mechanisms of action. We
will use Escherichia coli as a host for our functional selections, not only because this will allow us to construct
large functional libraries, but also because virulence in this pathogen is driven by prophage-expressed toxins
and because its phages are among those used most commonly to develop phage therapies. Thus, our findings
will not only be broadly relevant to pathogenesis and phage therapy across bacteria, but also will yield these
insights specifically in the context of this important human pathogen.
项目概要
细菌编码多种分子系统来防御噬菌体的感染。作为回应,
噬菌体设计了许多反防御策略来克服这种免疫力并重新建立感染。
越来越多的证据表明,自然界中大多数细菌防御系统和噬菌体反防御系统都具有
未被识别。这是一个主要的知识差距,因为这些系统之间的相互作用经常
决定噬菌体是否成功感染其细菌宿主。这些噬菌体感染反过来又具有重大意义
对传染病的演变和治疗的影响。例如,细菌的发病机制通常
由于表达毒素或其他毒力因子的原噬菌体的整合而进化。同时,
噬菌体越来越被视为治疗细菌感染的潜在疗法,特别是在以下情况下:
多重耐药性导致传统治疗失败。因此,更好地理解很重要
细菌防御和噬菌体反防御系统的天然多样性。为了满足这一需求,我们将设计
新的高通量功能选择,以寻找微生物生态系统中的防御和反防御系统
以及合成噬菌体开放阅读框的文库中。这种函数式方法不依赖于顺序
与预测防御和反防御系统相似,因此克服了常规、
基于同源性的发现方法。因此,这一战略预计将确定许多新的防御和
反防御基因超出了目前已知的范围。它对于检查编码的函数特别有价值
在噬菌体基因组和细菌基因组岛中,因为来自这些来源的大多数基因功能未知。
由于几乎所有细菌都应该编码抗噬菌体防御系统,并且几乎所有噬菌体都会编码反噬菌体防御系统。
防御策略,我们期待有很多新的发现。因为这些发现预计将
新颖的是,我们将结合遗传和功能测定来描述它们的作用机制。我们
将使用大肠杆菌作为我们功能选择的宿主,不仅因为这将使我们能够构建
大型功能库,还因为这种病原体的毒力是由原噬菌体表达的毒素驱动的
因为它的噬菌体是最常用于开发噬菌体疗法的噬菌体之一。因此,我们的研究结果
不仅与细菌的发病机制和噬菌体治疗广泛相关,而且还将产生这些
特别是在这种重要的人类病原体的背景下的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin J Forsberg其他文献
Kevin J Forsberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin J Forsberg', 18)}}的其他基金
Discovery of bacterial defense and phage counter-defense strategies
细菌防御和噬菌体反防御策略的发现
- 批准号:
10772250 - 财政年份:2021
- 资助金额:
$ 49.18万 - 项目类别:
Discovery of bacterial defense and phage counter-defense strategies
细菌防御和噬菌体反防御策略的发现
- 批准号:
10649493 - 财政年份:2021
- 资助金额:
$ 49.18万 - 项目类别:
Discovery of bacterial defense and phage counter-defense strategies
细菌防御和噬菌体反防御策略的发现
- 批准号:
10439572 - 财政年份:2021
- 资助金额:
$ 49.18万 - 项目类别:
Discovery of bacterial defense and phage counter-defense strategies
细菌防御和噬菌体反防御策略的发现
- 批准号:
10750038 - 财政年份:2021
- 资助金额:
$ 49.18万 - 项目类别:
相似国自然基金
靶向铜绿假单胞菌FpvA蛋白的铁载体偶联抗生素克服细菌耐药性及作用机制研究
- 批准号:82304313
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于吲哚信号分子的低剂量抗生素混合暴露诱导细菌群体耐药性机制及调控
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于质谱的细菌耐药性快速检测和抗生素最小抑菌浓度快速测量
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:
基于低浓度抗生素Hormesis效应的细菌耐药性前体机制及相关阻遏新方法的研究
- 批准号:21976137
- 批准年份:2019
- 资助金额:66 万元
- 项目类别:面上项目
胍基修饰的抗菌高分子与抗生素的协同效应及其对细菌耐药性的影响
- 批准号:81803481
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
An Integrated Catheter Dressing for Early Detection of Catheter-related Bloodstream Infections
用于早期检测导管相关血流感染的集成导管敷料
- 批准号:
10647072 - 财政年份:2023
- 资助金额:
$ 49.18万 - 项目类别:
Developing a novel class of peptide antibiotics targeting carbapenem-resistant Gram-negative organisms
开发一类针对碳青霉烯类耐药革兰氏阴性生物的新型肽抗生素
- 批准号:
10674131 - 财政年份:2023
- 资助金额:
$ 49.18万 - 项目类别:
Investigating phage therapy for the treatment of urinary tract infections
研究噬菌体疗法治疗尿路感染
- 批准号:
10677257 - 财政年份:2023
- 资助金额:
$ 49.18万 - 项目类别:
Investigating phage therapy for the treatment of urinary tract infections
研究噬菌体疗法治疗尿路感染
- 批准号:
10677257 - 财政年份:2023
- 资助金额:
$ 49.18万 - 项目类别:
Novel antimicrobials to combat Gram-negative bacteria
对抗革兰氏阴性菌的新型抗菌剂
- 批准号:
10888456 - 财政年份:2023
- 资助金额:
$ 49.18万 - 项目类别: