Novel Plasmodial Surface Anion Channel Inhibitors as Antimalarial Drugs

作为抗疟药物的新型疟原虫表面阴离子通道抑制剂

基本信息

  • 批准号:
    10062806
  • 负责人:
  • 金额:
    $ 98.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-21 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Summary/Abstract The overall objective of this project is to develop new, potent, selective antimalarials that act through a novel mechanism of blocking the plasmodial surface anion channel (PSAC), a previously unexploited and highly conserved plasmodial target. Human malaria is caused by five species of protozoan parasites in the genus Plasmodium. It is estimated that there are more than 200 million clinical cases of P. falciparum malaria and over 445,000 deaths annually, with the majority of the deaths occurring in sub-Saharan Africa. The malaria parasites, most importantly P. falciparum, require two hosts, which are humans and female Anopheles mosquitoes. Disease is transmitted to humans from the bite of an infected mosquito. There are no effective vaccines available to prevent malaria, but several small molecule treatment options exist, such as chloroquine (CQ) and artemisinin. CQ, once the mainstay of malaria treatment, has lost much of its efficacy because of mutations that confer resistance. Resistance to artemisinin-based therapy is now appearing in Southeast Asia. New small molecule drugs, especially those working on new targets that may be less susceptible to acquired resistance, are desperately needed. PSAC is a newly discovered essential antimalarial target which was validated by gene identification experiments. The channel is produced by the parasite and inserts into the infected erythrocyte membrane. It was demonstrated by Dr. Sanjay Desai, NIH, that PSAC inhibitors, discovered by high-throughput screening, kill parasites by direct action on this channel. In preliminary studies, Dr. Desai, developed and applied a screen for PSAC inhibitors using a sorbitol transport assay, that resulted in the identification of several chemotypes that displayed inhibitory potencies (K0.5 PSAC block) in the nanomolar range. Compounds also inhibited plasmodial growth with low nanomolar potencies (IC50). One of the “hit compound” chemical scaffolds were chosen for medicinal chemistry optimization based on their potency, low cytotoxicity, tractability of synthesis and overall favorable in vitro “drug-like” ADME results. The first, MBX 2366, was subjected to SAR evaluation in a Phase I SBIR project. Compounds in this series demonstrated efficacy, low toxicity and excellent in vitro ADME properties. The Phase II project focused on lead optimizing and scale-up chemistry as well as further mechanism of action studies and demonstrated good in vivo pharmacokinetics and toxicology studies and, notably, proof-of-concept efficacy in the humanized mouse model of P. falciparum infection. The proposed Phase IIB project will finalize compound optimization, including murine efficacy studies to be completed by Medicines for Malaria Venture (MMV), select a preclinical candidate and then conduct IND-enabling preclinical studies to advance a compound to the clinic. The preclinical candidate will be synthesized to a 1 Kg scale. The interdisciplinary approach, which will merge the antimalarial expertise of Dr. Desai and Dr. Jeremy Burrows of MMV with the anti-infective research and development capabilities of Microbiotix, will produce inhibitors for a novel, essential and conserved malarial target and provide new treatment options for resistant infections.
摘要/摘要 该项目的总体目标是开发新的、有效的、选择性的抗疟药,通过新颖的机制发挥作用。 阻断疟原虫表面阴离子通道(PSAC)的机制,这是一种以前未开发的且高度 人类疟疾是由该属的五种原生动物寄生虫引起的。 据估计,恶性疟原虫疟疾临床病例超过 2 亿例。 每年有 445,000 人死亡,其中大部分死亡发生在撒哈拉以南非洲地区。 最重要的是,恶性疟原虫需要两个宿主,即人类和雌性按蚊。 疾病通过受感染的蚊子叮咬传播给人类,目前尚无有效的疫苗。 预防疟疾,但存在几种小分子治疗选择,例如氯喹 (CQ) 和青蒿素。 CQ 曾经是疟疾治疗的中流砥柱,但由于基因突变而失去了大部分功效。 东南亚目前出现了对青蒿素疗法的耐药性。 ,特别是那些致力于不太容易受到获得性耐药性的新药物靶点的研究人员, PSAC是一种新发现的重要抗疟靶点,并已通过基因验证。 该通道由寄生虫产生并插入受感染的红细胞中。 NIH 的 Sanjay Desai 博士证明,PSAC 抑制剂是通过高通量发现的。 德赛博士在初步研究中开发并应用了通过直接作用于该通道来筛选、杀死寄生虫的方法。 使用山梨醇转运测定筛选PSAC抑制剂,结果鉴定了几种 化学型在纳摩尔范围内也表现出抑制效力(K0.5 PSAC 块)。 以低纳摩尔效力(IC50)抑制疟原虫生长,是“热门化合物”化学支架之一。 基于其效力、低细胞毒性、合成的易处理性而被选择进行药物化学优化 总体良好的体外“类药物”ADME 结果 第一个 MBX 2366 接受了 SAR 评估。 该系列化合物在 I 期 SBIR 项目中表现出功效、低毒性和优异的体外活性。 ADME 特性第二阶段项目的重点是先导化合物优化和放大化学以及进一步的研究。 作用机制研究并证明了良好的体内药代动力学和毒理学研究, 在恶性疟原虫感染的人源化小鼠模型中具有显着的概念验证功效。 IIB 期项目将完成化合物优化,包括将于 2017 年完成的小鼠功效研究 Medicines for Malaria Venture (MMV),选择临床前候选药物,然后进行支持 IND 的临床前研究 临床前候选化合物将被合成至 1 公斤规模。 跨学科方法,将融合 Desai 博士和 Jeremy Burrows 博士的抗疟专业知识 MMV 凭借 Microbiotix 的抗感染研发能力,将生产用于 新颖、重要且保守的疟疾靶标,并为耐药感染提供新的治疗选择。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimized Pyridazinone Nutrient Channel Inhibitors Are Potent and Specific Antimalarial Leads.
优化的哒嗪酮营养通道抑制剂是有效且特异性的抗疟药物。
  • DOI:
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Butler, Michelle M;Waidyarachchi, Samanthi L;Shao, Jinfeng;Nguyen, Son T;Ding, Xiaoyuan;Cardinale, Steven C;Morin, Lucas R;Kwasny, Steven M;Ito, Mai;Gezelle, Jeanine;Jiménez;Angulo;Jacobs, Robert T;Burrows, Jerem
  • 通讯作者:
    Burrows, Jerem
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michelle M. Butler其他文献

Roles of Cys148 and Asp179 in catalysis by deoxycytidylate hydroxymethylase from bacteriophage T4 examined by site-directed mutagenesis.
通过定点诱变检查噬菌体 T4 脱氧胞苷酸羟甲基酶催化 Cys148 和 Asp179 的作用。
  • DOI:
    10.1021/bi00157a020
  • 发表时间:
    1992-10-27
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    K. Graves;Michelle M. Butler;Larry W. Hardy
  • 通讯作者:
    Larry W. Hardy

Michelle M. Butler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michelle M. Butler', 18)}}的其他基金

Oxadiazole Inhibitors of Non-Stop Ribosome Rescue to treat MDR Neisseria gonorrhoeae
不间断核糖体救援恶二唑抑制剂治疗耐多药淋病奈瑟菌
  • 批准号:
    10231210
  • 财政年份:
    2017
  • 资助金额:
    $ 98.25万
  • 项目类别:
Aminospectinomycin antibacterials for the treatment of antibiotic-resistant gonorrhea and other bacterial STDs
氨基大观霉素抗菌药用于治疗抗生素耐药性淋病和其他细菌性 STD
  • 批准号:
    9252872
  • 财政年份:
    2017
  • 资助金额:
    $ 98.25万
  • 项目类别:
Novel Spectinamide Antibiotics for the Treatment of MDR/XDR Tuberculosis
用于治疗 MDR/XDR 结核病的新型 Spectinamide 抗生素
  • 批准号:
    8250690
  • 财政年份:
    2012
  • 资助金额:
    $ 98.25万
  • 项目类别:
Novel Plasmodial Surface Anion Channel Inhibitors as Antimalarial Drugs
作为抗疟药物的新型疟原虫表面阴离子通道抑制剂
  • 批准号:
    8549102
  • 财政年份:
    2012
  • 资助金额:
    $ 98.25万
  • 项目类别:
Novel spectinamide antibiotics for the treatment of MDR/XDR tuberculosis
用于治疗 MDR/XDR 结核病的新型大观酰胺抗生素
  • 批准号:
    8714556
  • 财政年份:
    2012
  • 资助金额:
    $ 98.25万
  • 项目类别:
Novel Spectinamide Antibiotics for the Treatment of MDR/XDR Tuberculosis
用于治疗 MDR/XDR 结核病的新型 Spectinamide 抗生素
  • 批准号:
    10252947
  • 财政年份:
    2012
  • 资助金额:
    $ 98.25万
  • 项目类别:
Novel Plasmodial Surface Anion Channel Inhibitors as Antimalarial Drugs
作为抗疟药物的新型疟原虫表面阴离子通道抑制剂
  • 批准号:
    8311901
  • 财政年份:
    2012
  • 资助金额:
    $ 98.25万
  • 项目类别:
Novel Plasmodial Surface Anion Channel Inhibitors as Antimalarial Drugs
作为抗疟药物的新型疟原虫表面阴离子通道抑制剂
  • 批准号:
    8832349
  • 财政年份:
    2012
  • 资助金额:
    $ 98.25万
  • 项目类别:
Novel spectinamide antibiotics for the treatment of MDR/XDR tuberculosis
用于治疗 MDR/XDR 结核病的新型大观酰胺抗生素
  • 批准号:
    8857368
  • 财政年份:
    2012
  • 资助金额:
    $ 98.25万
  • 项目类别:
Novel Spectinamide Antibiotics for the Treatment of MDR/XDR Tuberculosis
用于治疗 MDR/XDR 结核病的新型 Spectinamide 抗生素
  • 批准号:
    8436177
  • 财政年份:
    2012
  • 资助金额:
    $ 98.25万
  • 项目类别:

相似国自然基金

基于阴离子调控价态转移的光诱导铁催化聚烯烃的C(sp3)−H氧化氮化反应
  • 批准号:
    22371223
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
新型钠基层状氧化物阴离子氧化还原反应的稳定调控机制研究
  • 批准号:
    22379146
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于三维三蝶烯的高性能阴离子交换膜的设计合成及结构与性能关系研究
  • 批准号:
    22365006
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
富锂锰基正极中阴离子氧化还原机制的界面效应研究
  • 批准号:
    22309097
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
手性氢键供体与阴离子结合催化乙烯基醚的立体选择性阳离子聚合
  • 批准号:
    22301279
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Novel Plasmodial Surface Anion Channel Inhibitors as Antimalarial Drugs
作为抗疟药物的新型疟原虫表面阴离子通道抑制剂
  • 批准号:
    8549102
  • 财政年份:
    2012
  • 资助金额:
    $ 98.25万
  • 项目类别:
Novel Plasmodial Surface Anion Channel Inhibitors as Antimalarial Drugs
作为抗疟药物的新型疟原虫表面阴离子通道抑制剂
  • 批准号:
    8311901
  • 财政年份:
    2012
  • 资助金额:
    $ 98.25万
  • 项目类别:
Novel Plasmodial Surface Anion Channel Inhibitors as Antimalarial Drugs
作为抗疟药物的新型疟原虫表面阴离子通道抑制剂
  • 批准号:
    8832349
  • 财政年份:
    2012
  • 资助金额:
    $ 98.25万
  • 项目类别:
Molecular Basis for Transmembrane Conduction & Signaling
跨膜传导的分子基础
  • 批准号:
    8988572
  • 财政年份:
    1979
  • 资助金额:
    $ 98.25万
  • 项目类别:
Molecular Basis for Transmembrane Conduction & Signaling
跨膜传导的分子基础
  • 批准号:
    8786562
  • 财政年份:
    1979
  • 资助金额:
    $ 98.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了