Development and validation of a computational model of higher-order statistical learning on graphs in humans
人类图高阶统计学习计算模型的开发和验证
基本信息
- 批准号:10059133
- 负责人:
- 金额:$ 43.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAttentionAuditoryBackBehaviorBehavioralBipolar DisorderBirdsBrainClinicalCognitiveComputational ScienceComputer AnalysisComputer ModelsDevelopmentDimensionsDiseaseEnvironmentEventFatigueFoundationsFutureGoalsGrainGraphHumanImpairmentIntuitionKnowledgeLanguageLearningLinguisticsMajor Depressive DisorderMammalsMapsMathematicsMeasurementMental disordersModelingMoodsMotivationMusNeurocognitiveNeuropsychologyPaperPatientsPatternPerceptionPersonsPhysicsPopulationProcessPropertyPsychiatryPsychologyPsychometricsRattusResearch PersonnelSchizophreniaSensoryStatistical ModelsStatistical StudyStimulusStreamStructureSymptomsTimeTranslatingTranslationsTriplet Multiple BirthValidationVisualWolvesWorkautism spectrum disorderbehavior predictiondemographicsexecutive functionexpectationexperienceexperimental studyflexibilityinnovationlearned behaviormanmathematical modelnonhuman primatenovelpatient populationpsychologicrelating to nervous systemreward processingsensory inputsequence learningsocialstatistical learningstemstress statetheoriestrait
项目摘要
As humans navigate their environment, anticipation, planning, and perception all require an accurate map of
the statistical regularities governing their visual, linguistic, auditory, and social experiences. In each context, hu-
man experience consists of a sequence of events. Each event succeeds another according to a set of underlying
rules codifying possible event-to-event transitions, and the likelihood of each. To make predictions about the fu-
ture and respond to the environment with flexible behavior, humans must infer this network of transitions, forming
a cognitive map of causes and effects. Such maps and inferences are made possible by statistical learning.
The study of statistical learning represents a major opportunity for computational psychiatry for three reasons.
First, statistical learning shows differential accuracy across psychiatric conditions, task domains, and temporal
scales of experience. Second, statistical learning has marked potential for back-translation; multiple features
of statistical learning behavior and its neural underpinnings are conserved in non-human primates, and simpler
forms of sequence learning exist in other mammals (rats and mice) as well as birds. Third, – as we describe in
depth in our proposal – statistical learning can be formally modeled mathematically.
It is now timely to develop a flexible computational model of statistical learning. To serve the goals of com-
putational psychiatry, the functional form of such a model should reflect general principles of statistical learning
and the parameters should be sensitive to variability in behavior across the many specific disorders where deficits
appear. In preliminary experimental, computational, and theoretical work, we have uncovered a novel behavioral
signature of statistical learning; we have also translated that behavior into a formal model – inspired by principles
of statistical physics – with mathematically well-defined parameters, thereby deriving a theory that is grounded
in our previous experimental findings. Finally, we have experimentally validated the model by making accurate
predictions of behavior in a novel experiment.
Here we assemble a complementary set of co-investigators who have co-authored 31 papers in pairs or triplets,
with expertise in mathematical modeling and statistical physics (Bassett), statistical models of behavior (Moore),
intensive longitudinal experiments (Lydon-Staley), statistical learning (Thompson-Schill), and sensory process-
ing in psychiatry (Wolf). Together, we offer a well-integrated theoretical and experimental plan to hone our math-
ematical model of an aspect of human behavior that has not been extensively analyzed computationally, and in
which the underlying dimensional process is affected in psychiatric disorders. We distill our aims into reliability,
relevance, and generalizability of our model. Our approach is three-pronged, with innovations in experiment,
computation, and theory building on our team’s diverse expertise. Each prong will address all three aims, thereby
integrating our efforts to build a computational model of statistical learning behavior supporting future advances
in computational psychiatry. Our proposed efforts provide the foundation for an R01 extending to patients.
在导航他们的环境时,人类的预期、计划和感知都需要一张准确的地图
控制他们的视觉、语言、听觉和社会体验的统计规律。
人的经验由一系列事件组成,每个事件都根据一组潜在的事件发生。
规则编码可能的事件到事件的转换,以及每个事件的可能性,以对未来进行预测。
并以灵活的行为对环境做出反应,人类必须推断出这个转变网络,形成
因果认知图可以通过统计学习来实现。
出于三个原因,统计学习的研究为计算精神病学提供了一个重大机会。
首先,统计学习显示出不同的精神疾病、任务领域和时间的准确性差异。
其次,统计学习具有多种特征的显着潜力;
统计学习行为及其神经基础在非人类灵长类动物中是保守的,并且更简单
第三种形式的序列学习存在于其他哺乳动物(大鼠和小鼠)以及鸟类中——正如我们在中所描述的。
我们建议的深度——统计学习可以通过数学形式进行正式建模。
现在是时候开发一种灵活的统计学习计算模型来服务于计算机的目标了。
假设精神病学,这种模型的功能形式应该反映统计学习的一般原则
并且参数应该对许多特定疾病的行为变化敏感,其中缺陷
在初步的实验、计算和理论工作中,我们发现了一种新颖的行为。
统计学习的签名;我们还将这种行为转化为正式模型——受到原则的启发
统计物理学——具有数学上明确定义的参数,从而导出一个有根据的理论
最后,我们通过准确的实验验证了该模型。
新颖实验中的行为预测。
在这里,我们聚集了一组互补的共同研究人员,他们成对或三人共同撰写了 31 篇论文,
拥有数学建模和统计物理学(巴塞特)、行为统计模型(摩尔)方面的专业知识,
强化纵向实验(Lydon-Staley)、统计学习(Thompson-Schill)和感觉过程-
我们一起提供了一个综合的理论和实验计划来磨练我们的数学。
人类行为的一个方面的数学模型尚未经过广泛的计算分析,并且在
我们将我们的目标提炼为可靠性,
我们的模型的相关性和普遍性是三管齐下的,包括实验创新、
基于我们团队多样化专业知识的计算和理论,每个分支都将解决所有三个目标。
整合我们的努力来构建支持未来进步的统计学习行为的计算模型
我们提出的努力为 R01 扩展到患者奠定了基础。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Bayesian Nonparametrics View into Deep Representations
深度表示的贝叶斯非参数观点
- DOI:10.48550/arxiv.2301.08883
- 发表时间:2024-09-13
- 期刊:
- 影响因子:0
- 作者:Michael P. Jamroz;Marcin Kurdziel;Mateusz Opala
- 通讯作者:Mateusz Opala
Functional brain network architecture supporting the learning of social networks in humans.
支持人类社交网络学习的功能性大脑网络架构。
- DOI:
- 发表时间:2020-04-15
- 期刊:
- 影响因子:5.7
- 作者:Tompson, Steven H;Kahn, Ari E;Falk, Emily B;Vettel, Jean M;Bassett, Danielle S
- 通讯作者:Bassett, Danielle S
Optimizing the human learnability of abstract network representations.
优化抽象网络表示的人类可学习性。
- DOI:
- 发表时间:2022-08-30
- 期刊:
- 影响因子:11.1
- 作者:Qian, William;Lynn, Christopher W;Klishin, Andrei A;Stiso, Jennifer;Christianson, Nicolas H;Bassett, Dani S
- 通讯作者:Bassett, Dani S
Quantifying the compressibility of complex networks.
量化复杂网络的可压缩性。
- DOI:
- 发表时间:2021-08-10
- 期刊:
- 影响因子:11.1
- 作者:Lynn, Christopher W;Bassett, Danielle S
- 通讯作者:Bassett, Danielle S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Danielle Smith Bassett其他文献
Danielle Smith Bassett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Danielle Smith Bassett', 18)}}的其他基金
Guiding epilepsy surgery using network models and Stereo EEG
使用网络模型和立体脑电图指导癫痫手术
- 批准号:
10740473 - 财政年份:2023
- 资助金额:
$ 43.09万 - 项目类别:
Guiding epilepsy surgery using network models and Stereo EEG
使用网络模型和立体脑电图指导癫痫手术
- 批准号:
10667100 - 财政年份:2022
- 资助金额:
$ 43.09万 - 项目类别:
Guiding epilepsy surgery using network models and Stereo EEG
使用网络模型和立体脑电图指导癫痫手术
- 批准号:
10625963 - 财政年份:2022
- 资助金额:
$ 43.09万 - 项目类别:
Guiding epilepsy surgery using network models and Stereo EEG
使用网络模型和立体脑电图指导癫痫手术
- 批准号:
10845904 - 财政年份:2022
- 资助金额:
$ 43.09万 - 项目类别:
Guiding epilepsy surgery using network models and Stereo EEG
使用网络模型和立体脑电图指导癫痫手术
- 批准号:
10344259 - 财政年份:2022
- 资助金额:
$ 43.09万 - 项目类别:
Guiding epilepsy surgery using network models and Stereo EEG
使用网络模型和立体脑电图指导癫痫手术
- 批准号:
10667100 - 财政年份:2022
- 资助金额:
$ 43.09万 - 项目类别:
CRCNS: US-France Data Sharing Proposal: Lowering the barrier of entry to network neuroscience
CRCNS:美法数据共享提案:降低网络神经科学的准入门槛
- 批准号:
10019389 - 财政年份:2019
- 资助金额:
$ 43.09万 - 项目类别:
CRCNS: US-France Data Sharing Proposal: Lowering the barrier of entry to network neuroscience
CRCNS:美法数据共享提案:降低网络神经科学的准入门槛
- 批准号:
10262925 - 财政年份:2019
- 资助金额:
$ 43.09万 - 项目类别:
CRCNS: US-France Data Sharing Proposal: Lowering the barrier of entry to network neuroscience
CRCNS:美法数据共享提案:降低网络神经科学的准入门槛
- 批准号:
9916138 - 财政年份:2019
- 资助金额:
$ 43.09万 - 项目类别:
Longitudinal Mapping of Network Development Underlying Executive Dysfunction in Adolescence
青春期执行功能障碍背后的网络发展的纵向映射
- 批准号:
9522326 - 财政年份:2018
- 资助金额:
$ 43.09万 - 项目类别:
相似国自然基金
团队成长心态对团队创新的影响效应研究:基于注意力“配置”和“构型”的视角
- 批准号:72272078
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
企业与其商业伙伴的数字化战略关注如何影响绩效——基于注意力基础观的视角
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
创业团队前溯友谊对创业绩效的影响:基于注意力基础观视角的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CEO-TMT交互视角下CEO注意力焦点对新创企业商业模式创新的影响机理研究
- 批准号:72002203
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
非工作上网行为对知识型员工工作绩效的影响机制及组织对策研究
- 批准号:71901201
- 批准年份:2019
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 43.09万 - 项目类别:
Stopping Hydroxychloroquine In Elderly Lupus Disease (SHIELD)
停止使用羟氯喹治疗老年狼疮病 (SHIELD)
- 批准号:
10594743 - 财政年份:2023
- 资助金额:
$ 43.09万 - 项目类别:
Characterizing the prevalence and nature of facial recognition deficits in non-proliferative diabetic retinopathy
描述非增殖性糖尿病视网膜病变中面部识别缺陷的患病率和性质
- 批准号:
10667781 - 财政年份:2023
- 资助金额:
$ 43.09万 - 项目类别:
Disentangling the role of poverty-related experiences on children's self-regulation: Identifying dynamic and contextually-relevant mechanisms
理清与贫困相关的经历对儿童自我调节的作用:确定动态且与情境相关的机制
- 批准号:
10677464 - 财政年份:2023
- 资助金额:
$ 43.09万 - 项目类别:
Bionanomatrix coating to enhance antibacterial effects while reducing inflammation of knee joint implants
生物纳米基质涂层可增强抗菌效果,同时减少膝关节植入物的炎症
- 批准号:
10822220 - 财政年份:2023
- 资助金额:
$ 43.09万 - 项目类别: