Ultra-Processed Foods and Childhood Obesity
超加工食品和儿童肥胖
基本信息
- 批准号:10063710
- 负责人:
- 金额:$ 8.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-10 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAdultAgeAlgorithmsAwardBody mass indexCaloriesCarbohydratesCardiovascular DiseasesChildChildhoodClassificationCodeCohort AnalysisComputer softwareConsumptionControl GroupsCounselingDataData SetDietDietary intakeEatingEnergy IntakeEnrollmentEvaluationExposure toFamilyFatty acid glycerol estersFoodFood AccessFood ProcessingFoundationsFundingFutureGenerationsGoalsGrowthGuidelinesHealthHeightHourIndividualIntakeInterventionKnowledgeLinkLogistic RegressionsLow Income PopulationLow incomeMalignant NeoplasmsMapsMeasurementMeasuresMentorsMethodologyMethodsMinorityModelingMothersNational Heart, Lung, and Blood InstituteNon obeseNursery SchoolsNutritionalObesityOutcomeParentsPatternPoliciesPopulationPreschool ChildPreventive InterventionProcessProteinsRandomized Controlled TrialsResearchRiskRisk FactorsRoleSchoolsSystemTestingTimeUnderserved PopulationUnited StatesWeightagedarmbasecohortdisparity reductionearly childhoodeffective interventionevidence basefollow-upfood consumptionhealth disparityimprovedinterestminority childrennovelnutritionnutritional epidemiologynutritional guidelineobesity in childrenobesity preventionobesity riskobesity treatmentpreventprimary outcomeprogramsprospectiverandomized trialsecondary analysissugartreatment arm
项目摘要
PROJECT SUMMARY
Despite a broad understanding of the multi-level determinants of health disparities in childhood obesity, known
risk factors including diet and physical often do not adequately predict later obesity among low-income and
minority children. Developing effective intervention targets for childhood obesity in these populations is
therefore difficult. Emerging evidence suggests that ultra-processed food consumption may partially explain
health disparities in cardiovascular disease and cancer among adults. However, existing methods to classify
foods based on the extent of processing are inconsistent and unclear, making it difficult to assess exposure to
ultra-processed foods and associations with childhood weight outcomes. The current proposal will apply the
NOVA classification for ultra-processed foods to dietary recall data from an NHLBI-funded childhood obesity
prevention randomized controlled trial. Developing a reliable and valid methodology for assessing ultra-
processed food consumption and testing associations with childhood obesity will generate evidence to better
characterize dietary intake and to identify potential targets for reducing health disparities in childhood obesity.
This proposal builds on a robust dataset from the Growing Right Onto Wellness (GROW) trial, which aimed to
prevent childhood obesity using a three-year multi-level and culturally-tailored intervention. The trial
randomized 610 parent-preschool child pairs and achieved >90% retention at three-year follow-up, with high
rates of data completeness. Eligible children were ages 3-5 at enrollment, spoke English or Spanish, and had
BMI ≥50th percentile and <95th percentile. The dataset includes 24-hour diet recall data collected using NDS-R
software at baseline and three annual follow-up timepoints. The current proposal will develop and validate a
novel coding algorithm to map the existing NOVA classification system for ultra-processed foods onto this diet
recall data. This algorithm will generate an analytic variable that describes the number of calories consumed
per day in each of the four NOVA classifications for food processing level.
Using the newly developed approach to assessing ultra-processed food consumption, we will test the
association between higher levels of ultra-processed foods and childhood obesity across 3 years of follow up.
The main exposure variable will be the number of daily calories consumed for ultra-processed foods and the
primary outcome will be child raw BMI. The goals of this proposal are to 1) advance dietary measurement by
developing a novel methodology for evaluating levels of ultra-processed food consumption using diet recall
data; 2) assess whether ultra-processed food consumption level is predictive of incident obesity among low-
income, minority preschoolers; and 3) develop evidence for intervention targets for future R01 funding.
项目概要
尽管人们对儿童肥胖健康差异的多层次决定因素有广泛的了解,但已知
包括饮食和身体在内的危险因素通常不能充分预测低收入人群后来的肥胖情况
制定针对这些人群的儿童肥胖的有效干预目标。
因此,新出现的证据表明,过度加工食品的消费可能可以部分解释这一问题。
成人心血管疾病和癌症的健康差异然而,现有的分类方法。
基于加工程度的食品不一致且不明确,因此很难评估其接触程度
超加工食品及其与儿童体重结果的关联当前提案将适用
超加工食品的 NOVA 分类与 NHLBI 资助的儿童肥胖症的饮食回忆数据
预防随机对照试验。开发一种可靠有效的方法来评估超
加工食品消费和测试与儿童肥胖的关联将为更好地提供证据
描述膳食摄入量并确定减少儿童肥胖健康差异的潜在目标。
该提案建立在 Growing Right Onto Wellness (GROW) 试验的强大数据集之上,旨在
使用为期三年的多层次、针对文化的干预措施来预防儿童肥胖。
对 610 名家长与学龄前儿童进行随机分组,三年随访时保留率超过 90%,且保留率很高
符合条件的儿童在入学时年龄为 3-5 岁,会说英语或西班牙语,并且具有英语或西班牙语能力。
BMI ≥50% 且 <95% 的数据集包括使用 NDS-R 收集的 24 小时饮食回忆数据。
当前的提案将开发并验证一个基线和三个年度后续时间点的软件。
新颖的编码算法将现有的超加工食品 NOVA 分类系统映射到这种饮食中
该算法将生成一个描述消耗卡路里数的分析变量。
食品加工级别的四个 NOVA 分类中的每一个分类中的每天。
使用新开发的方法来评估超加工食品的消费,我们将测试
三年随访期间,较高水平的超加工食品与儿童肥胖之间存在关联。
主要的暴露变量是每天消耗超加工食品的卡路里数和
主要结果是儿童原始体重指数。该提案的目标是 1) 通过以下方式推进饮食测量。
开发一种利用饮食回忆来评估超加工食品消费水平的新方法
数据;2)评估超加工食品的消费水平是否可以预测低收入人群的肥胖事件
收入、少数族裔学龄前儿童;以及 3) 为未来 R01 资金的干预目标提供证据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Heerman其他文献
William Heerman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Heerman', 18)}}的其他基金
The ADAPT Trial: Adapting Evidence-Based Obesity Interventions in Community Settings
ADAPT 试验:在社区环境中采用循证肥胖干预措施
- 批准号:
10585810 - 财政年份:2023
- 资助金额:
$ 8.65万 - 项目类别:
COACH: Competency Based Approaches for Community Health
COACH:基于能力的社区健康方法
- 批准号:
10439470 - 财政年份:2020
- 资助金额:
$ 8.65万 - 项目类别:
COACH: Competency Based Approaches for Community Health
COACH:基于能力的社区健康方法
- 批准号:
10657431 - 财政年份:2020
- 资助金额:
$ 8.65万 - 项目类别:
COACH: Competency Based Approaches for Community Health
COACH:基于能力的社区健康方法
- 批准号:
10655736 - 财政年份:2020
- 资助金额:
$ 8.65万 - 项目类别:
COACH: Competency Based Approaches for Community Health
COACH:基于能力的社区健康方法
- 批准号:
10240284 - 财政年份:2020
- 资助金额:
$ 8.65万 - 项目类别:
GROW Baby: Improving Maternal Gestational Weight Gain and Infant Growth in the Growing Right Onto Wellness (GROW) Trial
GROW Baby:在 Growing Right Onto Wellness (GROW) 试验中改善母亲妊娠期体重增加和婴儿生长
- 批准号:
9198254 - 财政年份:2016
- 资助金额:
$ 8.65万 - 项目类别:
GROW Baby: Improving Maternal Gestational Weight Gain and Infant Growth in the Growing Right Onto Wellness (GROW) Trial
GROW Baby:在 Growing Right Onto Wellness (GROW) 试验中改善母亲妊娠期体重增加和婴儿生长
- 批准号:
9032820 - 财政年份:2016
- 资助金额:
$ 8.65万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 8.65万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 8.65万 - 项目类别:
Elucidating the role of pericytes in angiogenesis in the brain using a tissue-engineered microvessel model
使用组织工程微血管模型阐明周细胞在大脑血管生成中的作用
- 批准号:
10648177 - 财政年份:2023
- 资助金额:
$ 8.65万 - 项目类别:
The role of complement in chronic neuroinflammation and cognitive decline after closed head brain injury
补体在闭合性脑损伤后慢性神经炎症和认知能力下降中的作用
- 批准号:
10641096 - 财政年份:2023
- 资助金额:
$ 8.65万 - 项目类别:
Growth plate-targeted IGF1 to treat Turner Syndrome
生长板靶向 IGF1 治疗特纳综合征
- 批准号:
10819340 - 财政年份:2023
- 资助金额:
$ 8.65万 - 项目类别: