First-in-class peptide therapeutics for mitochondrial disorders: molecular mechanism of action and optimization of design
线粒体疾病的一流肽疗法:分子作用机制和设计优化
基本信息
- 批准号:10058469
- 负责人:
- 金额:$ 53.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgingAlzheimer&aposs DiseaseAnimal DiseasesBehaviorBindingBioenergeticsBiological AssayBiological AvailabilityBiomimeticsBiophysicsCalciumCalorimetryCardiolipinsCationsCell Culture TechniquesCell LineCell SurvivalCell modelCell physiologyChronicClinical TrialsComplexConfocal MicroscopyCoupledCrista ampullarisDiabetes MellitusDiseaseElectrostaticsEnergy MetabolismEquilibriumEvaluationFDA approvedFluorescenceFoundationsFree Radical ScavengingGene ExpressionGoalsHealthHeart DiseasesHeritabilityInner mitochondrial membraneInterdisciplinary StudyIonsKidney DiseasesKineticsLabelLeadLibrariesLipid BilayersLipidsLipoproteinsMalignant NeoplasmsMass Spectrum AnalysisMeasuresMediatingMedicineMembraneMembrane Structure and FunctionMetabolic DiseasesMitochondriaMitochondrial DiseasesModelingMolecularMolecular AnalysisMolecular ConformationMolecular Mechanisms of ActionMorphologyNerve DegenerationNon-Insulin-Dependent Diabetes MellitusOrganellesOutcomeOxidative PhosphorylationOxidative StressPathologicPathologyPatternPeptide ConformationPeptidesPermeabilityPhasePhysiologic pulsePlayPolymersProcessProductionPropertyProteinsReactive Oxygen SpeciesResearchResearch SupportResolutionRoleSafetySamplingSeriesShotgunsSideSiteSolidStressStructureSurfaceSystemTechniquesTestingTherapeuticThermodynamicsTreatment EfficacyVariantWorkYeastsbasebiophysical analysisbiophysical techniquescrosslinkdesignfunctional restorationimprovedinsightinterdisciplinary approachinterfacialislet amyloid polypeptidemembrane assemblymembrane modelmitochondrial dysfunctionmitochondrial membranemolecular dynamicsnanodisknext generationpeptide analogpeptide drugphysical propertypreclinical trialpreservationprotein complexprotein expressionprotein transportstressorvirtual
项目摘要
PROJECT SUMMARY
Mitochondria are organelles that play a dominant role in energy metabolism and many other cellular
processes. Mitochondrial dysfunction is associated with primary heritable diseases and aging-related declines
in health, including chronic pathologies like cancer, diabetes and neurodegeneration. There are currently no
cures for mitochondrial diseases. However, Szeto-Schiller (SS) peptides have emerged among the most
promising therapeutics for promoting mitochondrial health. As shown by preclinical and clinical trials, and as
exemplified by the lead compound SS-31 (Elamipretide), SS peptides show exceptionally broad therapeutic
efficacy in treating mitochondrial dysfunction. Using a multidisciplinary approach, our research team has
conducted the first in-depth analysis of the molecular mechanism of action (MoA) of SS peptides. Our work
supports a unique mechanism in which SS peptides interact with cardiolipin-rich mitochondrial membranes and
modulate general physical membrane properties, thereby underpinning their broad therapeutic potential. The
objective of the proposed project is twofold. The first goal is to thoroughly understand the MoA of SS peptides.
To this end, we will leverage our solid foundation of mechanistic insights to test, refine, and expand our
working models using computational, reductionist, mitochondrial, and cellular systems. The second goal is to
identify the physicochemical properties of SS peptides that are most critical to their mechanism. To this end,
we will evaluate a series of rationally designed SS peptide constructs with variations in the tetrapeptide
cationic/aromatic motif, using our established functional assays. With our highly interdisciplinary research
team, we will approach these goals as three separate aims. First, we will address how SS peptides interact
with lipid bilayers and modulate their physical properties using a combination of computational and biophysical
approaches with biomimetic model membrane systems. This will render critical information on equilibrium
peptide binding models, high resolution structural information on peptide conformational dynamics and
interaction with lipid groups, and how peptides modulate membrane electrostatics, lipid structural dynamics,
and bilayer polymorphic changes. Second, we will evaluate the effects of SS peptides on the structure and
function of membranes from yeast and mammalian models. This will establish the sites of peptide interaction in
the morphologically complex mitochondrion, how peptides affect the stability and assembly of membrane
complexes, the distribution of lipids within mitochondria, and lipid turnover kinetics. Finally, using mitochondrial
and cellular models, we will analyze the mechanisms by which SS peptides restore function under pathological
conditions including oxidative stress, high calcium load, and amyloidogenic proteins involved in type II diabetes
and Alzheimer’s disease. By this multi-tiered approach, our results will yield unprecedented insights into the
mechanism of this class of therapeutics with particular relevance to aging-related diseases. Further, our
peptide screen will inform the design of SS peptide variants with greater efficacy and/or bioavailability.
项目概要
线粒体是在能量代谢和许多其他细胞中起主导作用的细胞器
线粒体功能障碍与原发性遗传性疾病和衰老相关的衰退有关。
在健康方面,包括癌症、糖尿病和神经退行性疾病等慢性疾病,目前还没有。
然而,司徒席勒 (SS) 肽已成为治疗线粒体疾病的最有效方法之一。
促进线粒体健康的疗法如临床前和临床试验所示。
以先导化合物 SS-31(Elamipretide)为例,SS 肽显示出异常广泛的治疗作用
我们的研究团队采用多学科方法,取得了治疗线粒体功能障碍的功效。
我们的工作首次对 SS 肽的分子作用机制 (MoA) 进行了深入分析。
支持一种独特的机制,其中 SS 肽与富含心磷脂的线粒体膜相互作用,
调节一般物理膜特性,从而支撑其广泛的治疗潜力。
该项目的目标有两个:第一个目标是彻底了解 SS 肽的 MoA。
为此,我们将利用我们坚实的机械洞察力基础来测试、完善和扩展我们的
使用计算、还原论、线粒体和细胞系统的工作模型。
确定对其作用机制最关键的 SS 肽的理化特性。
我们将评估一系列合理设计的具有四肽变化的 SS 肽构建体
阳离子/芳香基序,使用我们已建立的功能测定法以及我们高度跨学科的研究。
团队,我们将把这些目标作为三个独立的目标来实现,首先,我们将解决 SS 肽如何相互作用。
与脂质双层并结合计算和生物物理来调节其物理特性
仿生模型膜系统的方法这将提供有关平衡的关键信息。
肽结合模型、肽构象动力学的高分辨率结构信息和
与脂质基团的相互作用,以及肽如何调节膜静电、脂质结构动力学、
其次,我们将评估SS肽对结构和双层多态性的影响。
酵母和哺乳动物模型的膜的功能这将建立肽相互作用的位点。
形态复杂的线粒体,肽如何影响膜的稳定性和组装
复合物、线粒体内脂质的分布以及脂质周转动力学最后,使用线粒体。
和细胞模型,我们将分析SS肽在病理条件下恢复功能的机制
包括与 II 型糖尿病有关的氧化应激、高钙负荷和淀粉样蛋白生成等病症
通过这种多层次的方法,我们的结果将产生前所未有的见解。
此类疗法的机制与衰老相关疾病特别相关。
肽筛选将为设计具有更高功效和/或生物利用度的 SS 肽变体提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NATHAN N ALDER其他文献
NATHAN N ALDER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NATHAN N ALDER', 18)}}的其他基金
First-in-class peptide therapeutics for mitochondrial disorders: molecular mechanism of action and optimization of design
线粒体疾病的一流肽疗法:分子作用机制和设计优化
- 批准号:
10259755 - 财政年份:2020
- 资助金额:
$ 53.37万 - 项目类别:
First-in-class peptide therapeutics for mitochondrial disorders: molecular mechanism of action and optimization of design
线粒体疾病的一流肽疗法:分子作用机制和设计优化
- 批准号:
10727483 - 财政年份:2020
- 资助金额:
$ 53.37万 - 项目类别:
First-in-class peptide therapeutics for mitochondrial disorders: molecular mechanism of action and optimization of design
线粒体疾病的一流肽疗法:分子作用机制和设计优化
- 批准号:
10624434 - 财政年份:2020
- 资助金额:
$ 53.37万 - 项目类别:
First-in-class peptide therapeutics for mitochondrial disorders: molecular mechanism of action and optimization of design
线粒体疾病的一流肽疗法:分子作用机制和设计优化
- 批准号:
10407655 - 财政年份:2020
- 资助金额:
$ 53.37万 - 项目类别:
Investigation of the Subunit and Lipid Interactions of the Mitochondrial Protein Import Machinery
线粒体蛋白质输入机制的亚基和脂质相互作用的研究
- 批准号:
8802921 - 财政年份:2014
- 资助金额:
$ 53.37万 - 项目类别:
Analysis of Mitochondrial Protein Integration Mechanisms
线粒体蛋白整合机制分析
- 批准号:
6742195 - 财政年份:2004
- 资助金额:
$ 53.37万 - 项目类别:
Analysis of Mitochondrial Protein Integration Mechanisms
线粒体蛋白整合机制分析
- 批准号:
6896894 - 财政年份:2004
- 资助金额:
$ 53.37万 - 项目类别:
相似国自然基金
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
光老化微塑料持久性自由基对海洋中抗生素抗性基因赋存影响机制
- 批准号:42307503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
任务切换影响相继记忆的脑机制:基于认知老化的视角
- 批准号:32360201
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
生物炭介导下喀斯特耕地土壤微塑料老化及其对Cd有效性的影响机制
- 批准号:42367031
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
生物炭原位修复底泥PAHs的老化特征与影响机制
- 批准号:42307107
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 53.37万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 53.37万 - 项目类别:
Stopping Hydroxychloroquine In Elderly Lupus Disease (SHIELD)
停止使用羟氯喹治疗老年狼疮病 (SHIELD)
- 批准号:
10594743 - 财政年份:2023
- 资助金额:
$ 53.37万 - 项目类别:
Chronic Pain and Risk of Alzheimer's-Related Neurodegeneration
慢性疼痛和阿尔茨海默病相关神经变性的风险
- 批准号:
10644253 - 财政年份:2023
- 资助金额:
$ 53.37万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 53.37万 - 项目类别: