Enhanced Diagnosis of Antibody-Mediated Kidney Rejection by Machine Learning and Hybrid Targeted-Shotgun Proteomics
通过机器学习和混合靶向鸟枪蛋白质组学增强抗体介导的肾脏排斥的诊断
基本信息
- 批准号:10055012
- 负责人:
- 金额:$ 23.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-03 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAlgorithmsAllograftingAmino AcidsAntibodiesAtlasesAtrophicBK VirusBioinformaticsBiological AssayBiological MarkersBiopsyBloodCaringCell Culture TechniquesCell physiologyChronic Kidney FailureClinicClinicalComb animal structureCommunitiesComplementDataData DiscoveryData SetDiagnosisDiagnosticDiagnostic testsDifferential DiagnosisDiffuseDiseaseEnd stage renal failureEpigenetic ProcessFibrosisFormalinGenerationsGenomicsGoalsGoldGraft RejectionGraft SurvivalHistologicHistologyHybridsInflammatoryInjuryKidneyKidney DiseasesKidney TransplantationLabelLesionLifeLiquid ChromatographyLongevityMachine LearningMapsMeasuresMediatingMessenger RNAMethodsModelingMolecularMolecular Diagnostic TestingMonitorMorphologyNucleic AcidsParaffin EmbeddingPathologistPathologyPathway interactionsPatientsPerformancePhenotypeProceduresProcessProtein AnalysisProteinsProteomeProteomicsQuality of lifeRNARNA analysisReactionRenal functionReportingReproducibilityResearchRiskRunningSamplingSensitivity and SpecificityShotgunsStable Isotope LabelingSurvival RateT-LymphocyteTechniquesTechnologyTestingTissue EmbeddingTissue SampleTissuesTranslatingTransplantationTubular formationUrineValidationassay developmentbasebiobankbiomarker discoverybiomarker panelburden of illnesscandidate markerclinical Diagnosisclinical practicecomplement C4dcostdesigndifferential expressioneffective therapyfollow-uphistological specimenshistopathological examinationimprovedinterstitialknowledge basemachine learning algorithmmolecular diagnosticsnon-invasive monitornovelnovel strategiesoutcome forecastpersonalized medicinepreservationprotein biomarkersprotein expressionproteomic signaturescreeningspecific biomarkerssynthetic peptidetandem mass spectrometrytargeted biomarkertranscriptometranscriptomics
项目摘要
Kidney transplantation offers the best quality of life for patients with chronic kidney failure. Antibody and T-cell
mediated rejection (ABMR and TCMR) are key factors that determine graft survival. Currently, the diagnosis
and differential diagnosis of rejection relies on histopathologic examination which has known limitations such
as subjective interpretations, limited reproducibility, and the need for expert transplant pathologists. There is an
unmet need to develop more specific and quantitative molecular tests that can complement and enhance
conventional histologic assessment. Among the molecular assays, proteome profiling is more attractive than
genomic and transcriptomic profiling which are subjected to numerous post-translational and epigenetic
regulatory mechanisms. Moreover, morphologic changes form the basis of classifying different allograft
diseases. Therefore, the transplant community needs to invest in biopsy-based assays in addition to the
blood/urine-based assays that are being developed by others. This study is aimed to fully map the proteomic
changes in routinely processed formalin fixed paraffin embedded (FFPE) biopsies using a liquid
chromatography–tandem mass spectrometry (LC-MS/MS) platform. To meet the needs of personalized
medicine, this platform uses a novel strategy and machine learning to simultaneously measure the absolute
expression levels of a panel of targeted biomarkers as well as thousands of untargeted proteins. The central
hypothesis is that LC-MS/MS can be used to define disease-specific biomarkers using a discovery data set,
which can then be followed up by a validation data set to determine if LC-MS/MS based tests can be
implemented in clinical practice. In the current project, we will focus on developing molecular assays for ABMR
since antibody contributes to graft loss in 60% of patients. Two Aims are proposed. In Aim #1, quantitative
proteomic strategies will be used to map proteome-level changes in a discovery set of biopsies with ABMR and
its mimics, such as acute tubular injury (ATI), TCMR, BK virus nephropathy (BKVN), interstitial fibrosis/tubular
atrophy (IFTA), and stable renal function (STA). The goal is to identify potential protein biomarkers that can
distinguish ABMR from its mimics. In Aim #2, the potential ABMR biomarkers obtained in Aim #1 will be
validated and optimized in an independent validation data set. Using a hybrid proteomic platform combing
targeted, shotgun proteomics and machine learning, information on absolute quantitation of potential protein
biomarkers and thousands of other proteins will be collected to build a kidney transplant Protein Atlas for assay
development. Successful completion of this study has great potential to be translated into clinical tests that will
enhance the diagnosis of ABMR from other diseases that can mimic that pathology. It will also serve as a
model for developing a new generation of clincal diagnositc tests that will use routinely fixed biopsy materials.
This will eliminate the need for intense biobanking efforts, which have hampered the more widespread
implementation of molecular diagnostics into the transplant clinic.
肾移植为慢性肾衰竭患者提供了最好的生活质量。
介导的排斥反应(ABMR和TCMR)是目前决定移植物存活的关键因素。
排斥反应的鉴别诊断依赖于组织病理学检查,该检查具有已知的局限性,例如
由于主观解释、有限的再现性以及需要专家移植病理学家。
开发更具体和定量的分子测试来补充和增强的需求尚未得到满足
在分子检测中,蛋白质组分析比传统的组织学评估更有吸引力。
基因组和转录组分析受到大量翻译后和表观遗传学的影响
此外,形态变化构成了不同同种异体移植物分类的基础。
因此,除了活检之外,移植界还需要投资于基于活检的检测。
其他人正在开发基于血液/尿液的检测方法,该研究旨在全面绘制蛋白质组图谱。
使用液体进行常规处理的福尔马林固定石蜡包埋 (FFPE) 活检的变化
色谱-串联质谱(LC-MS/MS)平台满足个性化需求。
医学,该平台使用新颖的策略和机器学习来同时测量绝对值
一组目标生物标志物以及数千种非目标蛋白质的表达水平。
假设 LC-MS/MS 可用于使用发现数据集定义疾病特异性生物标志物,
然后可以通过验证数据集来确定是否可以进行基于 LC-MS/MS 的测试
在当前的项目中,我们将重点开发 ABMR 的分子检测方法。
由于抗体导致 60% 的患者出现移植物丢失,因此在目标 1 中提出了两个目标:定量。
蛋白质组学策略将用于通过 ABMR 和
其类似物,如急性肾小管损伤 (ATI)、TCMR、BK 病毒肾病 (BKVN)、间质纤维化/肾小管
萎缩(IFTA)和稳定肾功能(STA)的目标是识别潜在的蛋白质生物标志物。
将 ABMR 与其模拟物区分开来 在目标 #2 中,在目标 #1 中获得的潜在 ABMR 生物标志物将是
使用混合蛋白质组平台在独立验证数据集中进行验证和优化。
靶向、鸟枪蛋白质组学和机器学习、潜在蛋白质绝对定量信息
将收集生物标志物和数千种其他蛋白质来构建肾移植蛋白质图谱进行分析
成功完成这项研究具有转化为临床测试的巨大潜力。
增强 ABMR 对可模仿该病理学的其他疾病的诊断。
开发新一代临床诊断测试的模型,该测试将使用常规固定的活检材料。
这将消除对生物样本库工作的需要,生物样本库工作阻碍了更广泛的研究
在移植诊所中实施分子诊断。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Diagnosis of T-cell-mediated kidney rejection by biopsy-based proteomic biomarkers and machine learning.
通过基于活检的蛋白质组生物标志物和机器学习诊断 T 细胞介导的肾脏排斥。
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Fang, Fei;Liu, Peng;Song, Lei;Wagner, Patrick;Bartlett, David;Ma, Liane;Li, Xue;Rahimian, M Amin;Tseng, George;Randhawa, Parmjeet;Xiao, Kunhong
- 通讯作者:Xiao, Kunhong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PARMJEET S RANDHAWA其他文献
PARMJEET S RANDHAWA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PARMJEET S RANDHAWA', 18)}}的其他基金
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别:
Optimizing the Diagnostic Strategy for Acute Musculoskeletal Infections in Children: Evaluating the Clinical Performance and Comparative Cost of a Noninvasive Diagnostic Technique
优化儿童急性肌肉骨骼感染的诊断策略:评估无创诊断技术的临床表现和比较成本
- 批准号:
10664298 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别:
SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
- 批准号:
10816667 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别:
Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
- 批准号:
10759550 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别: