Novel noninvasive high-resolution in vivo imaging platform to study the thyroid gland physiology
研究甲状腺生理学的新型无创高分辨率体内成像平台
基本信息
- 批准号:10042718
- 负责人:
- 金额:$ 19.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-21 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdrenergic AgentsArchitectureBiologyBlood CirculationBlood VesselsBlood flowCaliberCellsCellular StructuresCellular biologyCyclic AMPDataDetectionDietEndocrineEnvironmentEyeFunctional disorderGeneral PopulationGlandGoalsHistologicHormone secretionHumanImageIn VitroIncidenceInjectionsIodineKnowledgeLaboratoriesMalignant NeoplasmsMeasurementMetabolic DiseasesMethodsModificationMonitorMusOrganismOutcomePhysiologicalPhysiologyPlasmaPlayPropertyReportingResearchResolutionRisk FactorsRoleSpecimenStimulusStructureSystemTechnologyTestingThyroglobulinThyroid GlandThyroid HormonesThyrotoxicosisTimeTissuesTransgenic MiceTranslationsTransplantationVascular PermeabilitiesVascularizationVisualizationanterior chamberbasecell growthcholinergiceye chamberimaging platformin vivoin vivo imaginginnovationinsightiodine deficiency syndromelongitudinal analysismouse modelnovelnovel strategiesresponsethyroid transplantationtool
项目摘要
Project Summary/Abstract
All tissues of a living organism rely on normal thyroid hormone levels to develop and function properly. Millions
of people world-wide suffer from thyroid dysfunction (TD). TD incidence is 4-10% in the general population and
is considerably higher in people with metabolic diseases. Despite the central role that thyroid gland plays in
human physiology, most of what we know about thyroid cell biology, control of thyroid follicular cell growth,
vasculature adaptation and endocrine interactions has been derived from histological assessments and in vitro
studies that limit translation to the in vivo environment. Remarkably, these in vitro set-ups do not replicate the
basic functional unit of the thyroid, particularly the three-dimensional angio-follicular unit. Therefore, in vivo
studies of thyroid gland physiology and pathophysiology are hindered by the lack of approaches in which the
thyroid gland can be assessed in its natural architecture. The long-term goal of my research is to understand
the cell biology of the thyroid gland in the living organism. The strength of the present application relies on my
preliminary data of a robust technological platform that I developed in my laboratory. This novel approach
allows noninvasive real-time in vivo imaging of the mouse and human follicular cell. The technology is based
on transplantation of the mouse and human thyroid fragments into the mouse eye, which engrafts and
becomes revascularized; it permits the analysis of longitudinal changes in thyroid graft size, blood flow and
vessel diameters, with three-dimensional in vivo images of the thyroid angio-follicular unit. My hypothesis is
that mouse and human thyroid gland transplanted into the mouse anterior chamber of the eye resembles the
normal cellular structure of the thyroid and recapitulate the responses/adaptations to iodine deficiency and
thyrotoxicosis. To test my hypothesis, I will pursue two specific aims: 1) obtain unique in vivo intracellular
physiological measurements of the angio-follicular unit and its response to physiological stimuli and 2) gain in
vivo insights into the adaptation of the human and mouse angio-follicular unit and its cellular components to
iodine deficiency and thyrotoxicosis. I will study mice transplanted with mouse and human thyroid specimens
and manipulate different endocrine stimuli. Transgenic mouse models will allow me to demonstrate for the first
time thyrocytes activation in vivo. I will challenge the system by hyperactivating the thyroid gland with
experimental iodine deficiency. The responses to thyrotoxicosis (increased levels of thyroid hormone) will also
be assessed. This innovative platform will overcome a major technical roadblock by allowing the visualization
and measurement of dynamic properties of the thyroid gland biology in vivo. At their successful completion,
my studies will enhance our knowledge of the in vivo mechanisms of vasculature adaptation and thyroid
follicular cell growth. I predict that deploying these methods will provide unprecedented opportunities to
advance in the understanding of human thyroid physiology and thyroid malignancies.
项目概要/摘要
生物体的所有组织都依赖正常的甲状腺激素水平来正常发育和发挥功能。百万
全世界 的人患有甲状腺功能障碍 (TD)。一般人群中 TD 的发生率为 4-10%
患有代谢疾病的人的比例要高得多。尽管甲状腺在其中发挥着核心作用
人类生理学,我们对甲状腺细胞生物学的大部分了解,甲状腺滤泡细胞生长的控制,
脉管系统适应和内分泌相互作用源自组织学评估和体外
限制翻译到体内环境的研究。值得注意的是,这些体外设置并没有复制
甲状腺的基本功能单位,特别是三维血管滤泡单位。因此,体内
由于缺乏研究甲状腺生理学和病理生理学的方法,甲状腺生理学和病理生理学的研究受到阻碍。
甲状腺可以通过其自然结构进行评估。我研究的长期目标是了解
活体中甲状腺的细胞生物学。当前应用程序的强度依赖于我
我在实验室开发的强大技术平台的初步数据。这种新颖的方法
允许对小鼠和人类滤泡细胞进行无创实时体内成像。该技术是基于
将小鼠和人类甲状腺碎片移植到小鼠眼睛中,
血运重建;它可以分析甲状腺移植物大小、血流量和甲状腺移植物的纵向变化
血管直径,以及甲状腺血管滤泡单位的三维体内图像。我的假设是
将小鼠和人类甲状腺移植到小鼠眼前房类似于
甲状腺的正常细胞结构并概括对碘缺乏的反应/适应
甲状腺毒症。为了检验我的假设,我将追求两个具体目标:1)获得独特的体内细胞内
血管毛囊单位的生理测量及其对生理刺激的反应和 2) 增益
对人和小鼠血管滤泡单位及其细胞成分适应的体内见解
缺碘和甲状腺毒症。我将研究移植了小鼠和人类甲状腺标本的小鼠
并操纵不同的内分泌刺激。转基因小鼠模型将让我第一次展示
体内甲状腺细胞激活的时间。我将通过过度激活甲状腺来挑战该系统
实验性缺碘。对甲状腺毒症(甲状腺激素水平升高)的反应也会
进行评估。这个创新平台将通过允许可视化来克服主要的技术障碍
以及体内甲状腺生物学动态特性的测量。在他们的成功完成后,
我的研究将增强我们对脉管系统适应和甲状腺的体内机制的了解
滤泡细胞生长。我预测部署这些方法将为
对人类甲状腺生理学和甲状腺恶性肿瘤的了解取得进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joao Pedro Saar Werneck de Castro其他文献
Joao Pedro Saar Werneck de Castro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joao Pedro Saar Werneck de Castro', 18)}}的其他基金
In vivo effects of physical exercise on human islet structure and function
体内体育锻炼对人体胰岛结构和功能的影响
- 批准号:
10296007 - 财政年份:2021
- 资助金额:
$ 19.19万 - 项目类别:
Novel noninvasive high-resolution in vivo imaging platform to study the thyroid gland physiology
研究甲状腺生理学的新型无创高分辨率体内成像平台
- 批准号:
10397680 - 财政年份:2020
- 资助金额:
$ 19.19万 - 项目类别:
Novel noninvasive high-resolution in vivo imaging platform to study the thyroid gland physiology
研究甲状腺生理学的新型无创高分辨率体内成像平台
- 批准号:
10220963 - 财政年份:2020
- 资助金额:
$ 19.19万 - 项目类别:
相似国自然基金
记忆再巩固中去甲肾上腺素能系统在药物依赖戒断后潜伏心理渴求中的作用
- 批准号:82001404
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
肾上腺素能受体SNPs及PWV、CBP对射血分数保留心衰的发病及药物敏感性的影响
- 批准号:81471402
- 批准年份:2014
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
Transcriptional and epigenetic regulation of thermogenic adipocyte program
产热脂肪细胞程序的转录和表观遗传调控
- 批准号:
10604352 - 财政年份:2022
- 资助金额:
$ 19.19万 - 项目类别:
3-Dimensional virtual ventricles to design precision therapies in hypertrophic cardiomyopathy
3 维虚拟心室设计肥厚型心肌病的精准疗法
- 批准号:
10215670 - 财政年份:2021
- 资助金额:
$ 19.19万 - 项目类别:
3-Dimensional virtual ventricles to design precision therapies in hypertrophic cardiomyopathy
3 维虚拟心室设计肥厚型心肌病的精准疗法
- 批准号:
10381681 - 财政年份:2021
- 资助金额:
$ 19.19万 - 项目类别:
Novel noninvasive high-resolution in vivo imaging platform to study the thyroid gland physiology
研究甲状腺生理学的新型无创高分辨率体内成像平台
- 批准号:
10397680 - 财政年份:2020
- 资助金额:
$ 19.19万 - 项目类别:
Novel noninvasive high-resolution in vivo imaging platform to study the thyroid gland physiology
研究甲状腺生理学的新型无创高分辨率体内成像平台
- 批准号:
10220963 - 财政年份:2020
- 资助金额:
$ 19.19万 - 项目类别: