Deep learning approaches to decipher the impact of mobile element insertion on alternative splicing in neurological disorders
深度学习方法破译移动元件插入对神经系统疾病选择性剪接的影响
基本信息
- 批准号:10041366
- 负责人:
- 金额:$ 12.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAlternative SplicingAlzheimer&aposs DiseaseAutopsyBasic ScienceBiologyBloodBrainBrain DiseasesCRISPR/Cas technologyCellsChromosome PairingCohort StudiesComputational BiologyComputer AnalysisComputer ModelsDNADNA Insertion ElementsDataData SetDefectDetectionDevelopmentDiseaseDisease modelDorsalDystoniaElementsEtiologyEventEvolutionExcision RepairFamilial DysautonomiaFeedbackFellowshipFilipinoGeneral HospitalsGenerationsGenesGeneticGenetic TranscriptionGenomeGenomicsGenotype-Tissue Expression ProjectHaplotypesHumanHuman GenomeIndividualInstitutesInternationalIntronsLaboratoriesLateralLeadLearningLinear RegressionsLinkMachine LearningMapsMassachusettsMeasuresMentorsMentorshipMethodsMichiganMindMinisatellite RepeatsModelingMolecularMosaicismNeurodegenerative DisordersNeurodevelopmental DisorderNeuromuscular DiseasesNeuronsOutcomeParkinsonian DisordersPathogenicityPatternPeripheralPharmaceutical PreparationsPhasePopulationPrefrontal CortexProcessPropertyRNA SplicingRegulationResearchResearch PersonnelRetroelementsRoleSamplingSchizophreniaScienceShapesShort Interspersed Nucleotide ElementsSourceSpecificityStructureTAF1 geneTechniquesTherapeutic TrialsTissue-Specific SplicingTissuesTrainingTraining ProgramsTranscription AlterationTranslational ResearchUniversitiesUntranslated RNAVariantWorkbrain tissuecareer developmentcohortcollaborative environmentconvolutional neural networkdeep learningdrug developmentfunctional genomicsfunctional outcomesgene functiongenetic architecturegenome analysisgenome editinggenome sequencinggenome-widehuman diseasein silicoinsightmedical schoolsmind controlnervous system disorderneuron developmentnovelprogramsresponseskillsstatistical learningstructural genomicstherapeutic targettranscriptometranscriptome sequencingtranscriptomicswhole genome
项目摘要
The purpose of this training and research application is to study the functional impact of mobile element insertions (MEIs) in neurological disorders (NDs) using new developments in deep learning techniques. MEIs are transposable DNA fragments that are able to insert throughout the human genome. There are at least 124 independent MEIs associated with human diseases. Approximately 20% of these diseases represent a spectrum of NDs, yet the overall contribute of MEIs to the etiology of NDs has not been systematically estimated. To address this, we will (1) characterize functional MEIs in GTEx cohorts in healthy individuals; (2) build a comprehensive functional map of MEIs to determine tissue-specific and brain-specific impact; and (3) impute transcriptional changes on various NDs where whole-genome sequencing (WGS) data will be generated. The proposed application will also develop an extensive research program for Dr. Dadi Gao, a computational biologist and statistical geneticist who has trained in functional genomic studies of alternative splicing in neurodegenerative disorders and therapeutic targeting of a splicing defect that causes a severe neurodevelopmental disorder. He has developed novel methods to investigate regulation of the transcriptome and to facilitate analyses in drug development. He now seeks to expand his expertise by applying statistical and deep learning models on large cohorts of sequencing data from controls and cases with NDs from post-mortem tissues, then impute functional consequences of MEIs from WGS in large-scale disease cohorts. The training plan consists of two years of mentored research to learn new skills in genome analysis, MEI characterization, and advanced deep learning techniques, followed by three years of shaping an independent laboratory. The research plan is developed to comprehensively explore functional variation in the genome by decomposing transcriptomic changes against MEIs. Dr. Michael Talkowski at Massachusetts General Hospital, Harvard, and the Broad Institute will serve as the primary mentor, while Dr. Manolis Kellis at MIT and the MIT Computational Biology Group, and the Broad Institute will serve as a co-mentor and close collaborator. These mentors are recognized experts in genomic structural variants, functional genomics, the genetics of neurological disorders, and computational modeling to establish functional elements in the human genome. In addition, a team of independent investigators from basic and translational research will provide Dr. Gao with comprehensive feedback to keep both his science and career development on track. The highly collaborative environment in CGM, MGH, Harvard Medical School, the Broad Institute and the University of Michigan Medical School will prepare Dr. Gao for his transition to an independent investigator. This outstanding mentorship team and training program will facilitate the career development of Dr. Gao as he seeks to redefine the functional maps of MEIs in the human genome and to impute their impact in large-scale neurological disorders.
此培训和研究应用的目的是利用深度学习技术的新发展来研究移动元件插入 (MEI) 对神经系统疾病 (ND) 的功能影响。 MEI 是可转座 DNA 片段,能够插入整个人类基因组。至少有 124 个独立的 MEIs 与人类疾病相关。这些疾病中大约 20% 代表一系列 ND,但 MEI 对 ND 病因学的总体贡献尚未得到系统估计。为了解决这个问题,我们将 (1) 表征健康个体 GTEx 队列中的功能性 MEI; (2) 构建 MEIs 的综合功能图谱,以确定组织特异性和大脑特异性影响; (3) 将转录变化归因于将生成全基因组测序 (WGS) 数据的各种 ND。拟议的应用程序还将为计算生物学家和统计遗传学家 Dadi Gau 博士开发一个广泛的研究计划,他接受过神经退行性疾病中选择性剪接的功能基因组研究以及针对导致严重神经发育障碍的剪接缺陷的治疗靶向的培训。他开发了新的方法来研究转录组的调控并促进药物开发的分析。他现在寻求通过对来自死后组织的对照和 ND 病例的大量测序数据应用统计和深度学习模型来扩展自己的专业知识,然后将来自 WGS 的 MEI 的功能后果归因于大规模疾病队列。培训计划包括两年的指导研究,以学习基因组分析、MEI 表征和先进深度学习技术方面的新技能,随后三年打造独立实验室。该研究计划旨在通过分解 MEIs 的转录组变化来全面探索基因组的功能变异。麻省总医院、哈佛大学和布罗德研究所的 Michael Talkowski 博士将担任主要导师,麻省理工学院的 Manolis Kellis 博士和麻省理工学院计算生物学小组以及布罗德研究所将担任联合导师和密切合作者。这些导师是基因组结构变异、功能基因组学、神经系统疾病遗传学以及建立人类基因组功能元件的计算模型方面的公认专家。此外,来自基础和转化研究的独立研究人员团队将为高博士提供全面的反馈,以确保他的科学和职业发展步入正轨。 CGM、麻省总医院、哈佛医学院、布罗德研究所和密歇根大学医学院的高度协作环境将为高博士向独立研究者的转变做好准备。这个出色的导师团队和培训计划将促进高博士的职业发展,因为他致力于重新定义人类基因组中 MEI 的功能图谱,并估算其对大规模神经系统疾病的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DADI GAO其他文献
DADI GAO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DADI GAO', 18)}}的其他基金
Deep learning approaches to decipher the impact of mobile element insertion on alternative splicing in neurological disorders
深度学习方法破译移动元件插入对神经系统疾病选择性剪接的影响
- 批准号:
10619132 - 财政年份:2020
- 资助金额:
$ 12.69万 - 项目类别:
Deep learning approaches to decipher the impact of mobile element insertion on alternative splicing in neurological disorders
深度学习方法破译移动元件插入对神经系统疾病选择性剪接的影响
- 批准号:
10261424 - 财政年份:2020
- 资助金额:
$ 12.69万 - 项目类别:
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
- 批准号:62306090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度海表反照率遥感算法研究
- 批准号:42376173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
- 批准号:62371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
m6A-suite: an informatics pipeline and resource for elucidating roles of m6A epitranscriptome in cancer
m6A-suite:用于阐明 m6A 表观转录组在癌症中的作用的信息学管道和资源
- 批准号:
10645584 - 财政年份:2023
- 资助金额:
$ 12.69万 - 项目类别:
Functional analysis of ESRP1/2 and CTNND1 gene variants in orofacial cleft
ESRP1/2和CTNND1基因变异在口面裂中的功能分析
- 批准号:
10565102 - 财政年份:2023
- 资助金额:
$ 12.69万 - 项目类别:
Computational tools and resources to study alternative splicing and mRNA isoform variation
研究选择性剪接和 mRNA 亚型变异的计算工具和资源
- 批准号:
10669330 - 财政年份:2022
- 资助金额:
$ 12.69万 - 项目类别:
Developing Machine Learning Models for the Analysis of Splicing Data in Large Heterogeneous Cohorts
开发机器学习模型来分析大型异构队列中的拼接数据
- 批准号:
10672974 - 财政年份:2021
- 资助金额:
$ 12.69万 - 项目类别:
Developing Machine Learning Models for the Analysis of Splicing Data in Large Heterogeneous Cohorts
开发机器学习模型来分析大型异构队列中的拼接数据
- 批准号:
10315802 - 财政年份:2021
- 资助金额:
$ 12.69万 - 项目类别: