MRI-Controllable Microscale Electronics for Minimally-Invasive Wireless Bio-Sensors and Bio-Actuators
用于微创无线生物传感器和生物执行器的 MRI 可控微型电子器件
基本信息
- 批准号:10043403
- 负责人:
- 金额:$ 57.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2022-03-11
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimalsAutoimmune DiseasesBehaviorBiological MarkersBiological MonitoringBiological ProcessBiomimetic DevicesBiomimeticsBiophysical ProcessBiophysicsBloodBrainCardiovascular systemCommunicationCustomDetectionDevelopmentDevicesDiagnosisDiagnosticDiseaseEarly DiagnosisEffectivenessElectromagneticsElectronicsEngineeringFrequenciesGastrointestinal tract structureGoalsHarvestImageImaging DeviceInflammatoryLocationMagnetic Resonance ImagingMalignant NeoplasmsMapsMeasuresMedical DeviceMethodsMonitorMusNuclearOrganPerformancePhysiologic pulsePhysiologicalPhysiologyProcessReporterResolutionRobotSignal TransductionSmall IntestinesStreamSystemTechnologyTherapeuticTherapeutic AgentsTissue imagingTissuesValidationWireless Technologyaccurate diagnosisacoustic imagingbasedesigndisease diagnosisgastrointestinal imaginghigh resolution imagingimaging agentimaging modalityin vivoinstrumentationmagnetic fieldmicrosystemsminimally invasivenervous system disorderphysical propertypillradio frequencysensortemporal measurementtomography
项目摘要
Project Summary
The progress of biomedical devices over the past decades is changing how we think about diagnostics
and therapeutics. Nowadays, small medical devices can diagnose and treat disease from inside the body
targeting neurological and autoimmune disorders, cardiovascular conditions, cancer, and other diseases. For
instance, smart pills are being used to image the gastrointestinal tract, distributed sensors are being developed
to map the function of the brain, and microscale robots are being designed to access organs through the blood
stream. However, a major challenge remains in the way these devices communicate with the outside world.
Existing electromagnetic, acoustic, and imaging-based methods for localizing and communicating with such
devices with spatial selectivity are limited by the physical properties of tissue or the performance of the imaging
modality. Similarly, most of the current methods for monitoring biophysical electromagnetic signals in opaque
tissue suffer from poor spatial resolution or other technology-dependent limitations (e.g., tethered devices, poor
sensitivity, highly invasive).
Here, we propose to address both challenges by developing an alternative approach for the minimally
invasive monitoring and control of biophysical processes with high-precision and high-resolution using
microscale biomimetic devices. Specifically, we will adapt the behavior of nuclear spins in magnetic resonance
imaging (MRI) to engineer MRI-controllable resonant-circuit-based microsystems whose resonance frequency
and tuning depend on the local magnetic field and bio-electromagnetic signal, respectively. The application of
magnetic field gradients and radio-frequency signals (available in MRI) then allows the imaging of localized
biophysical processes. These Wireless Electronic MRI Agents (WEMA) will be developed using integrated circuit
(IC) technology and will be compatible with MRI-instrumentation. We will use a small animal 7 T MRI instrument
(available at USC) as our initial system. As a proof-of-concept, we will target the detection of Chron’s disease
using photoluminescence-enabled WEMA devices, addressing the need for accurate and early diagnosis in
inflammatory small bowel disorders. If successful, this transformative technology will provide a new biomimetic
platform capable of wireless, distributed, minimally-invasive sensing and control of biophysical processes using
MRI, and will enhance the development of a wide range of biomedical applications, from distributed monitoring
of relevant biomarkers to targeted release of therapeutic agents and tissue imaging for disease diagnosis.
We will achieve the proposed overall goals by pursuing the following major aims:
Specific Aim 1: Develop miniature WEMA devices via IC design.
Specific Aim 2: Develop MRI methods to interface with WEMA devices.
Specific Aim 3: Experimental validation of WEMA technology in vivo.
项目概要
过去几十年生物医学设备的进步正在改变我们对诊断的看法
如今,小型医疗设备可以从体内诊断和治疗疾病。
针对神经系统和自身免疫性疾病、心血管疾病、癌症和其他疾病。
例如,智能药丸被用于对胃肠道进行成像,分布式传感器正在开发中
绘制大脑功能图,微型机器人正在设计中通过血液进入器官
然而,这些设备与外界通信的方式仍然是一个重大挑战。
现有的基于电磁、声学和成像的方法用于定位和与此类设备通信
具有空间选择性的设备受到组织物理特性或成像性能的限制
类似地,目前大多数监测不透明生物物理电磁信号的方法。
组织受到较差的空间分辨率或其他技术相关的限制(例如,系留设备、较差的
敏感性、高侵入性)。
在这里,我们建议通过开发一种替代方法来解决这两个挑战
利用高精度和高分辨率对生物物理过程进行侵入式监测和控制
具体来说,我们将调整核自旋在磁共振中的行为。
成像(MRI)来设计基于 MRI 可控谐振电路的微系统,其谐振频率
和调谐分别取决于局部磁场和生物电磁信号。
然后,磁场梯度和射频信号(可用于 MRI)可以对局部区域进行成像
这些无线电子 MRI 代理 (WEMA) 将使用集成电路进行开发。
(IC)技术并将与 MRI 仪器兼容我们将使用小动物 7 T MRI 仪器。
(南加州大学提供)作为我们的初始系统作为概念验证,我们的目标是检测 Chron 病。
使用具有光致发光功能的 WEMA 设备,满足准确、早期诊断的需求
如果成功,这项变革性技术将提供一种新的仿生技术。
能够对生物物理过程进行无线、分布式、微创传感和控制的平台
MRI,并将促进分布式监测等广泛生物医学应用的发展
相关生物标志物的靶向释放治疗剂和用于疾病诊断的组织成像。
我们将通过实现以下主要目标来实现拟议的总体目标:
具体目标 1:通过 IC 设计开发微型 WEMA 设备。
具体目标 2:开发与 WEMA 设备连接的 MRI 方法。
具体目标 3:WEMA 技术的体内实验验证。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manuel Monge其他文献
Manuel Monge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
Fosl2调控染色质开放性在哺乳动物卵丘-卵母细胞复合物成熟过程中的机制研究
- 批准号:82301863
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
H5亚型禽流感病毒PA蛋白诱导降解JAK1增强病毒对哺乳动物致病性的作用及机制研究
- 批准号:32373042
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
动物双歧杆菌对不同聚合度低聚木糖同化差异性的分子机制研究
- 批准号:32302789
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
基于扁颅蝠类群系统解析哺乳动物脑容量适应性减小的演化机制
- 批准号:32330014
- 批准年份:2023
- 资助金额:215 万元
- 项目类别:重点项目
相似海外基金
The developmental pathway of fetal-derived B cells
胎儿来源的 B 细胞的发育途径
- 批准号:
10735381 - 财政年份:2023
- 资助金额:
$ 57.44万 - 项目类别:
Mechanisms of immunological memory-mediated pathogenesis in chronic autoimmune uveitis
慢性自身免疫性葡萄膜炎免疫记忆介导的发病机制
- 批准号:
10657851 - 财政年份:2023
- 资助金额:
$ 57.44万 - 项目类别:
Signaling activation and constraints in maintaining immune homeostasis
维持免疫稳态的信号激活和限制
- 批准号:
10619849 - 财政年份:2023
- 资助金额:
$ 57.44万 - 项目类别:
Strategies to attenuate the indirect alloimmune response in encapsulated pancreatic islet transplantation
减弱封装胰岛移植中间接同种免疫反应的策略
- 批准号:
10678425 - 财政年份:2023
- 资助金额:
$ 57.44万 - 项目类别:
High-throughput nanoIEA-based Assay for Screening Immune Cell-Vascular Interactions
用于筛选免疫细胞-血管相互作用的基于 nanoIEA 的高通量测定法
- 批准号:
10592897 - 财政年份:2023
- 资助金额:
$ 57.44万 - 项目类别: