Role of Stress Granule Protein Aggregation in Axon Regeneration
应激颗粒蛋白聚集在轴突再生中的作用
基本信息
- 批准号:10030563
- 负责人:
- 金额:$ 57.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressAdultAffectAttenuatedAutomobile DrivingAxonAxotomyBindingBiologicalCellsChronicClinicalCommunitiesComplexCytoplasmic GranulesDataFRAP1 geneG3BP1 geneGenetic TranslationGrowthGrowth Associated Protein 43HourHumanImportinsIn VitroIndividualInjuryKnowledgeLesionLiteratureMessenger RNAMolecularMotorNatural regenerationNerveNerve RegenerationNeuraxisNeuronsNeurosciencesPathway interactionsPeptidesPeripheralPeripheral NervesPeripheral Nervous SystemPeripheral nerve injuryPermeabilityPhosphorylationPhosphotransferasesPhysiologicalPopulationProtein BiosynthesisProteinsPublishingRNARNA, Messenger, StoredRegulationReportingResearchRoleSensorySignal TransductionSolidSpecificitySpinal CordSpinal cord injuryTertiary Protein StructureTestingTherapeuticTimeTissuesTranslatingTranslational ActivationTranslationsViralWorkaxon growthaxon injuryaxon regenerationcalreticulincasein kinaseclinically relevantcohortin vivoinjuredinjury and repairinsightknock-downnerve injuryneuromechanismnovel therapeutic interventionoverexpressionprogramsprotein aggregationrecruitregenerativereinnervationrelating to nervous systemrepairedresponse to injurystress granuletool
项目摘要
Peripheral nerves spontaneously regenerate but the axon growth rate is abysmally slow, such that
complete functional reinnervation of targets is rarely achieved in humans. Axon regeneration in
the central nervous system is even worse, such that individuals with spinal cord injury (SCI)
almost invariably have permanent lose of sensory and motor functions below the level of the lesion.
There is a pressing need to accelerate axon regeneration in the peripheral nervous system and
increase axon regeneration in the central nervous system. Our research program focuses on axon
intrinsic mechanisms of regeneration. Intra-axonally synthesized proteins support axon growth in
developing neurons. We have shown that PNS neurons retain the capacity to synthesize proteins in
their axons and these proteins support growth of injured axons. Axons of cultured neurons contain
thousands of mRNAs – and several lines of evidence point to complex populations of mRNAs in CNS
axons in vivo and spinal cord axons contain mRNAs and translational machinery when encouraged to
regenerate with permissive substrates. Despite
remarkable advances since the early 2000’s, the molecular mechanisms that determine when and where
a specific mRNA is translated in axons remain largely unknown. This level of regulation is
critical for regulating axon growth capacity. We have shown that mRNAs are stored in PNS axons in
RNA-protein aggregates that contain the stress granule protein G3BP1. G3BP1 protein can drive
stress granule aggregation, and G3BP1 phosphorylation blocks stress granule assembly. Unlike the
classically defined stress granule, axonal G3PB1 protein shows aggregation in uninjured/functioning
PNS axons. These axonal G3BP1 aggregates rapidly increase after axotomy, but decrease to below
basal levels shortly thereafter with a corresponding increase in phosphorylated G3BP1. G3BP1 binds
to mRNAs in axons and attenuates their translation. We have discovered exogenous agents and
endogenous signals that trigger disassembly of axonal G3BP1 aggregates. The exogenous agents
specifically increase axonal protein synthesis and accelerate axon growth rates in vitro and in
vivo. These observations have led us to hypothesize that physiological aggregation of stress
granule proteins in axons attenuates axon growth in the injured PNS and CNS by blocking translation
of an axonal mRNA cohort. We will test this hypothesis with the following specific aims:
Aim 1 – Promotion of axon growth by inhibition of G3BP1 function.
Aim 2 – Endogenous mechanisms for axonal G3BP1 aggregate disassembly.
Aim 3 – Mechanisms driving axon growth upon disassembly of axonal G3BP1 aggregates.
Functional roles for axonal translation have now come to light and we have solid in vivo evidence
that this mechanism can be targeted to accelerate axon growth after acute peripheral nerve injury.
Completion of the proposed research will bring new insight into mechanisms for temporal regulation
of axonal mRNA translation in axon injury & regeneration and uncover new therapeutic strategies for
neural repair.
周围神经自发再生,但轴突生长速度极其缓慢,因此
人类的轴突再生很少实现目标的完全功能性再神经支配。
中枢神经系统更糟,例如患有脊髓损伤(SCI)的人
几乎总是在病变水平以下永久丧失感觉和运动功能。
迫切需要加速周围神经系统的轴突再生
增加中枢神经系统的轴突再生。
轴突内合成的蛋白质支持轴突生长的内在机制。
我们已经证明 PNS 神经元保留了合成蛋白质的能力。
它们的轴突和这些蛋白质支持培养的神经元轴突的生长。
数以千计的 mRNA——以及多条证据表明中枢神经系统中存在复杂的 mRNA 群体
当鼓励时,体内轴突和脊髓轴突含有 mRNA 和翻译机制
尽管有允许的基质再生。
自 2000 年代初期以来,决定何时何地的分子机制取得了显着进展
轴突中翻译的特定 mRNA 在很大程度上仍不清楚。
对于调节轴突生长能力至关重要 我们已经证明 mRNA 储存在 PNS 轴突中。
含有应激颗粒蛋白 G3BP1 的 RNA 蛋白聚集体可以驱动 G3BP1 蛋白。
与应激颗粒聚集不同,G3BP1 磷酸化会阻止应激颗粒组装。
经典定义的应激颗粒,轴突 G3PB1 蛋白显示未受伤/功能状态下的聚集
这些轴突 G3BP1 聚集体在轴突切除后迅速增加,但减少到以下。
此后不久,G3BP1 的磷酸化水平相应增加。
我们发现了外源性因子和作用。
触发轴突 G3BP1 聚集体分解的内源信号。
在体外和体内特异性地增加轴突蛋白质合成并加速轴突生长速率
这些观察结果引导我们与压力的生理聚集作斗争。
轴突中的颗粒蛋白通过阻断翻译来减弱受伤的三七和中枢神经系统的轴突生长
我们将通过以下具体目标来检验这一假设:
目标 1 – 通过抑制 G3BP1 功能促进轴突生长。
目标 2 – 轴突 G3BP1 聚集体分解的内源机制。
目标 3 – 轴突 G3BP1 聚集体分解后驱动轴突生长的机制。
轴突翻译的功能作用现已揭示,我们有可靠的体内证据
该机制可以有针对性地加速急性周围神经损伤后的轴突生长。
完成拟议的研究将为时间调节机制带来新的见解
轴突损伤和再生中轴突 mRNA 翻译的研究,并揭示新的治疗策略
神经修复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFERY L TWISS其他文献
JEFFERY L TWISS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFERY L TWISS', 18)}}的其他基金
Role of Stress Granule Protein Aggregation in Axon Regeneration
应激颗粒蛋白聚集在轴突再生中的作用
- 批准号:
10647839 - 财政年份:2020
- 资助金额:
$ 57.54万 - 项目类别:
Role of Stress Granule Protein Aggregation in Axon Regeneration
应激颗粒蛋白聚集在轴突再生中的作用
- 批准号:
10265401 - 财政年份:2020
- 资助金额:
$ 57.54万 - 项目类别:
Role of Stress Granule Protein Aggregation in Axon Regeneration
应激颗粒蛋白聚集在轴突再生中的作用
- 批准号:
10406395 - 财政年份:2020
- 资助金额:
$ 57.54万 - 项目类别:
Role of Stress Granule Protein Aggregation in Axon Regeneration
应激颗粒蛋白聚集在轴突再生中的作用
- 批准号:
10447127 - 财政年份:2020
- 资助金额:
$ 57.54万 - 项目类别:
Destabilization of axonal mRNAs by KHSRP complexes during axon regeneration
轴突再生过程中 KHSRP 复合物导致轴突 mRNA 不稳定
- 批准号:
10666545 - 财政年份:2015
- 资助金额:
$ 57.54万 - 项目类别:
Destabilization of axonal mRNAs by KHSRP complexes during axon regeneration
轴突再生过程中 KHSRP 复合物导致轴突 mRNA 不稳定
- 批准号:
10666545 - 财政年份:2015
- 资助金额:
$ 57.54万 - 项目类别:
Destabilization of axonal mRNAs by KHSRP complexes during axon regeneration
轴突再生过程中 KHSRP 复合物导致轴突 mRNA 不稳定
- 批准号:
10306001 - 财政年份:2015
- 资助金额:
$ 57.54万 - 项目类别:
Destabilization of axonal mRNAs by KHSRP complexes during axon regeneration
轴突再生过程中 KHSRP 复合物导致轴突 mRNA 不稳定
- 批准号:
10430242 - 财政年份:2015
- 资助金额:
$ 57.54万 - 项目类别:
Systems dynamics of intracellular communication (Spatial 2011)
细胞内通讯的系统动力学(Spatial 2011)
- 批准号:
8129400 - 财政年份:2011
- 资助金额:
$ 57.54万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 57.54万 - 项目类别:
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 57.54万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 57.54万 - 项目类别:
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 57.54万 - 项目类别:
Role of serotonin brain circuit in the developmental emergence ofinnate fear
血清素脑回路在先天恐惧的发展中的作用
- 批准号:
10664638 - 财政年份:2023
- 资助金额:
$ 57.54万 - 项目类别: