Optimization and dissemination of non-linear Acousto-Optic Lens two-photon microscopy for high speed multiscale 3D imaging
用于高速多尺度 3D 成像的非线性声光透镜双光子显微镜的优化和推广
基本信息
- 批准号:10005501
- 负责人:
- 金额:$ 46.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcousticsAnimalsAttentionAxonBiologicalBrainCellsComputer softwareData AnalysesDendritesDevelopmentDiamondDimensionsFeedbackFunctional ImagingFundingGenerationsHybridsImageIndividualKnowledgeLasersLengthMapsMeasurementMethodsMicroscopeMicroscopyMonitorMotionMovementNeuronsNeurosciencesNeurosciences ResearchNeurotransmittersOpticsPerformancePopulationPropertyPyramidal CellsReporterResolutionScanningShipsSignal TransductionSpeedSpottingsStandardizationStructureSystemTechnologyTestingThree-Dimensional ImagingTimeTreesVariantadaptive opticsanalysis pipelinearbitrary spinautomated analysisawakebasebrain tissuecommercializationcostdata formatdata standardsdata structureexperimental studyhigh resolution imagingimaging approachimaging facilitiesimaging softwareimprovedinterestlensmicroscopic imagingnervous system disorderneural circuitneuronal circuitryneurotransmissionneurotransmitter releasenew technologynovelopen sourceoptical imagingprototypespatiotemporalstructured datatemporal measurementtooltwo photon microscopytwo-photonultra high resolutionuser-friendlyvoltage
项目摘要
PROJECT SUMMARY
To understand brain function, it is essential to identify how information is represented in neuronal population
activity and how it is transformed by individual neurons as it flows through microcircuits. Two-photon (2P)
microscopy is a core tool for this because it enables neuronal activity to be monitored at high spatial resolution
deep within brain tissue in behaving animals. However, the temporal resolution of conventional
galvanometer-based 2P microscopy severely limits measurements of fast signaling in 3D neuronal circuits.
Acousto-optic lens (AOL) microscopy, which enables fast focussing and selective imaging of regions of interest
distributed within the imaging volume, has substantially improved the temporal resolution of 3D 2P microscopy.
But current AOL microscopes, which rely on linear acoustic drive waveforms, suffer from limitations that make
them inefficient to monitor signaling in structures that project in the Z dimension. Each change in the focus
requires a 24 µs ‘dead time’ to refill the AOL aperture and continuous line scanning is restricted to the selected
X-Y focal plane, limiting imaging rates for 3D dendritic trees to a few Hz, rather than the 100-1000 Hz required
for monitoring neurotransmitter reporters and voltage indicators. The main aim of this project is to optimize and
disseminate nonlinear AOL 3D microscopy, a technology we have invented to overcome these limitations by
enabling ultra-fast line scanning (up to 40 kHz) in any arbitrary direction in X, Y and Z. By developing a
prototype nonlinear AOL 2P microscope with real time correction of brain movement, we have demonstrated
the performance of this technology for high-speed multiscale 3D imaging of neural circuits in awake behaving
animals. We will build on these results by optimizing nonlinear AOL microscopy for imaging entire 3D dendritic
trees and the surrounding neuronal population at unprecedented speeds. We will develop variants of this
dendritic ‘arboreal imaging’ approach to provide low spatial resolution, ultra-high-speed 3D imaging (up to 1
kHz) by combining the fast scanning and adaptive optics properties of nonlinear AOLs. We will also extend the
real time FPGA analysis used in our closed loop 3D movement correction to enable ‘attentional imaging’ where
active regions of a dendritic tree, or circuit, are rapidly detected and imaged at higher spatio-temporal
resolution. These applications will provide the temporal resolution required for monitoring voltage across the
entire 3D dendritic tree of pyramidal cells in awake animals for the first time. Moreover, attentional imaging will
enable neurotransmitter release to be mapped at high spatiotemporal resolution. Low cost dissemination of this
powerful new technology will be achieved by providing US labs and an imaging facility with compact nonlinear
AOL modules that will be added to their existing conventional 2P microscopes. By extending our open source
microscope GUI software, standardizing data formats with NWB2 and refining automated analysis pipelines,
we will also deliver reliable user-friendly microscope control and a semiautomated data analysis framework for
the collaborators to carry out experiments on a range of different neural circuits.
项目概要
要了解大脑功能,必须确定信息在神经群体中的表示方式
活动及其在流经微电路时如何被单个神经元转化。双光子 (2P)
显微镜是实现这一点的核心工具,因为它能够以高空间分辨率监测神经活动
在行为动物的脑组织深处。然而,传统的时间分辨率
基于检流计的 2P 显微镜严重限制了 3D 神经元回路中快速信号传导的测量。
声光透镜 (AOL) 显微镜,可实现感兴趣区域的快速聚焦和选择性成像
分布在成像体积内,大大提高了 3D 2P 显微镜的时间分辨率。
但目前的 AOL 显微镜依赖于线性声学驱动波形,存在局限性,使得
它们无法有效地监控 Z 维度上投射的结构中的信号。焦点的每次变化。
需要 24 µs“死区时间”来重新填充 AOL 孔径,并且连续行扫描仅限于选定的
X-Y 焦平面,将 3D 树突树的成像速率限制为几赫兹,而不是所需的 100-1000 赫兹
用于监测神经递质产生和电压指标。该项目的主要目的是优化和
传播非线性 AOL 3D 显微镜,这是我们发明的一项技术,旨在克服这些限制
能够在 X、Y 和 Z 的任意方向上进行超快线扫描(高达 40 kHz)。
我们已经证明了具有实时校正大脑运动功能的非线性 AOL 2P 显微镜原型
该技术在清醒状态下对神经回路进行高速多尺度 3D 成像的性能
我们将在这些结果的基础上,优化非线性 AOL 显微镜对整个 3D 树突进行成像。
我们将以前所未有的速度开发树木和周围的神经群体。
树突“树木成像”方法提供低空间分辨率、超高速 3D 成像(最多 1
kHz),通过结合非线性 AOL 的快速扫描和自适应光学特性,我们还将扩展
我们的闭环 3D 运动校正中使用实时 FPGA 分析,以实现“注意力成像”
树突树或电路的活动区域可以在更高的时空条件下快速检测和成像
这些应用将提供监测整个电压所需的时间分辨率。
首次在清醒动物中获得完整的锥体细胞 3D 树突状树,此外,注意力成像将首次实现。
能够以高时空分辨率绘制神经递质释放图,并以低成本传播。
通过为美国实验室和成像设施提供紧凑的非线性技术,将实现强大的新技术
通过扩展我们的开源,AOL 模块将添加到其现有的传统 2P 显微镜中。
显微镜 GUI 软件,使用 NWB2 标准化数据格式并完善自动化分析流程,
我们还将提供可靠的用户友好型显微镜控制和半自动数据分析框架
合作者对一系列不同的神经回路进行实验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JESSICA A CARDIN其他文献
JESSICA A CARDIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JESSICA A CARDIN', 18)}}的其他基金
Disruption of neuromodulatory signaling in models of Alzheimer's Disease
阿尔茨海默病模型中神经调节信号的破坏
- 批准号:
10391934 - 财政年份:2022
- 资助金额:
$ 46.67万 - 项目类别:
The role of TRIO signaling in neuronal development, synaptic function, and circuit connectivity
TRIO 信号传导在神经元发育、突触功能和电路连接中的作用
- 批准号:
10442686 - 财政年份:2021
- 资助金额:
$ 46.67万 - 项目类别:
The role of TRIO signaling in neuronal development, synaptic function, and circuit connectivity
TRIO 信号传导在神经元发育、突触功能和电路连接中的作用
- 批准号:
10415377 - 财政年份:2021
- 资助金额:
$ 46.67万 - 项目类别:
Optimization and dissemination of non-linear Acousto-Optic Lens two-photon microscopy for high speed multiscale 3D imaging
用于高速多尺度 3D 成像的非线性声光透镜双光子显微镜的优化和推广
- 批准号:
10240525 - 财政年份:2019
- 资助金额:
$ 46.67万 - 项目类别:
GABAergic contributions to neural circuit deficits in schizophrenia
GABAergic 对精神分裂症神经回路缺陷的贡献
- 批准号:
8612465 - 财政年份:2014
- 资助金额:
$ 46.67万 - 项目类别:
GABAergic contributions to neural circuit deficits in schizophrenia
GABAergic 对精神分裂症神经回路缺陷的贡献
- 批准号:
9206190 - 财政年份:2014
- 资助金额:
$ 46.67万 - 项目类别:
GABAergic contributions to neural circuit deficits in schizophrenia
GABAergic 对精神分裂症神经回路缺陷的贡献
- 批准号:
8794472 - 财政年份:2014
- 资助金额:
$ 46.67万 - 项目类别:
Inhibitory regulation of cortical visual processing
皮质视觉处理的抑制性调节
- 批准号:
8418081 - 财政年份:2013
- 资助金额:
$ 46.67万 - 项目类别:
Inhibitory regulation of cortical visual processing
皮质视觉处理的抑制性调节
- 批准号:
8826129 - 财政年份:2013
- 资助金额:
$ 46.67万 - 项目类别:
Impact of local network dynamics on visual cortex function
局部网络动态对视觉皮层功能的影响
- 批准号:
10308547 - 财政年份:2013
- 资助金额:
$ 46.67万 - 项目类别:
相似国自然基金
鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
- 批准号:62301355
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
- 批准号:12374418
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
多孔声学超材料宏微观结构耦合强化吸声机制与多尺度结构设计技术
- 批准号:52375122
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
轨道模式依赖的声学拓扑态及其应用研究
- 批准号:12304492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
- 批准号:12304486
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SORDINO-fMRI for mouse brain applications
用于小鼠大脑应用的 SORDINO-fMRI
- 批准号:
10737308 - 财政年份:2023
- 资助金额:
$ 46.67万 - 项目类别:
Changes in apical cochlear mechanics after cochlear implantation
人工耳蜗植入后耳蜗顶端力学的变化
- 批准号:
10730981 - 财政年份:2023
- 资助金额:
$ 46.67万 - 项目类别:
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 46.67万 - 项目类别:
Ultrasound-guided Ultra-steerable Histotripsy Array System for Non-invasive treatment of Soft Tissue Sarcoma
超声引导超可控组织解剖阵列系统用于软组织肉瘤的无创治疗
- 批准号:
10649994 - 财政年份:2023
- 资助金额:
$ 46.67万 - 项目类别:
High-Intensity Ultrasound Ablation for Septal Reduction Therapy of Hypertrophic Cardiomyopathy
高强度超声消融室间隔缩小术治疗肥厚型心肌病
- 批准号:
10818081 - 财政年份:2023
- 资助金额:
$ 46.67万 - 项目类别: