Development of a mechanosensitive synthetic cell for mediating intercellular communication.
开发用于介导细胞间通讯的机械敏感合成细胞。
基本信息
- 批准号:10031135
- 负责人:
- 金额:$ 27.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-02 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAdhesivesApoptosisBehaviorBindingBiochemicalBiocompatible MaterialsBiological MarkersBiomimeticsBlood PlateletsBlood VesselsCalciumCalpainCardiovascular systemCell DeathCell modelCellsCommunicationComplexCouplingCytoplasmic GranulesDataDevelopmentDiseaseEncapsulatedEndothelial CellsEngineeringEnvironmentEnzymesEpidermal Growth Factor ReceptorExocytosisExtracellular MatrixFosteringFutureGoalsGrowthHealthHuman bodyHybridsImmunotherapyIn VitroLateralLigandsLipid BilayersLiquid substanceLocationLyticMammalian CellMeasuresMechanicsMediatingMembraneMembrane FusionMissionModelingMonitorMorphologyOxidation-ReductionPathologyPatientsPeptidesPhysiologicalPolymersProbabilityProcessPropertyPublic HealthResearchResearch PersonnelSignal TransductionSignal Transduction PathwaySpecificityStimulusSurfaceSystemT-LymphocyteTechniquesTechnologyTestingTherapeuticTissuesUnited States National Institutes of HealthVariantVascular Endothelial Growth FactorsVesicleWorkbasebiological adaptation to stresscancer cellcell killingcell typechimeric antigen receptordensityexosomeexperiencehemodynamicsimprovedinnovationintercellular communicationinterestmechanical forcemechanotransductionmembrane reconstitutionnovelpreventreceptor bindingreconstitutionresponseshear stressstem cellssuccesssynthetic biologytooltumor
项目摘要
Project Summary
Our abilities to engineer synthetic cell systems that can communicate with living cells remain limited. The
long-term goal is to engineer cell-like systems with increasingly complex biomimetic functions that can serve
as cell replacement or augment functions of natural cells. The objective of this proposal is to develop a
mechanosensitive synthetic cell that can respond to an increase in shear stress, which is most prevalent in
the cardiovascular system, and secrete bioactive molecules to effect living cells. Cells in our bodies
constantly sense and respond to microenvironmental stimuli, including passive and active physical stimuli,
such as extracellular matrix rigidity, adhesive ligand density, tension, compression, and fluid shear flow. The
rationale underlying this proposal is that completion will result in a novel biomimetic cell-like system as a
novel shear stress-responsive ‘material’ that can interface with natural living cells. The majority of
engineered biomaterials respond to differences in the biochemical environment (e.g. differences in redox,
pH, and enzyme composition) between normal and diseased tissues. By comparison, there has been
relatively less effort in exploiting forces for stimulus-responsive behaviors. The synthetic cell idea is inspired
by natural platelets’ ability to bind and respond to elevated shear stress and secrete granule contents when
bound to a surface. The proposed work consists of three specific aims: 1) Characterize shear stress
response of mechanosensing vesicles, 2) Couple mechanosensing with exocytosis in synthetic cells, 3)
Test intercellular communication of shear stress-activated synthetic cells with endothelial cells in vitro. We
will pursue these aims using an innovative approach of repurposing mechanosensitive channel for shear
stress sensing and using peptide-based membrane fusion. Our lab was the first group to demonstrate
mechanosensing synthetic cells and we have significant expertise in bottom-up synthetic biology. The
proposed research is significant, because it will be the first synthetic cell system developed to communicate
with mammalian cells using calcium-triggered secretion. The work will develop fundamental strategies for
coupling mechanosensing to a biochemical response in synthetic cells. This will open new avenue for other
researchers interested in developing more complex cell-like systems. The results will have an important
positive impact immediately because it will support the idea that mechanosensitive channels can sense
lateral membrane tension due to shear stress and long-term because they lay the groundwork of
engineering synthetic cells with other sensing abilities.
项目概要
我们设计能够与活细胞通信的合成细胞系统的能力仍然有限。
长期目标是设计具有日益复杂的仿生功能的类细胞系统,以服务于
作为细胞替代或增强自然细胞的功能该提案的目的是开发一种
机械敏感的合成细胞,可以响应剪切应力的增加,这在
心血管系统,并分泌生物活性分子来影响我们体内的活细胞。
不断感知并响应微环境刺激,包括被动和主动的物理刺激,
例如细胞外基质刚性、粘附配体密度、张力、压缩和流体剪切流。
该提案的基本原理是,完成后将产生一种新型仿生细胞样系统,作为
新型剪切应力响应“材料”,可以与大多数天然活细胞相互作用。
工程生物材料对生化环境的差异做出反应(例如氧化还原的差异,
通过比较,正常组织和患病组织之间存在差异。
利用力进行刺激响应行为的努力相对较少,从而激发了合成细胞的想法。
通过天然血小板结合和响应升高的剪切应力并分泌颗粒内容物的能力
所提议的工作包括三个具体目标: 1) 表征剪切应力。
机械传感囊泡的响应,2) 将机械传感与合成细胞中的胞吐作用结合起来,3)
体外测试剪切应力激活的合成细胞与内皮细胞的细胞间通讯。
将使用一种创新方法来实现这些目标,重新利用剪切力的机械敏感通道
我们的实验室是第一个演示压力传感和使用基于肽的膜融合的小组。
机械传感合成细胞,我们在自下而上的合成生物学方面拥有丰富的专业知识。
拟议的研究意义重大,因为它将是第一个开发用于通信的合成细胞系统
这项工作将开发利用钙触发分泌的哺乳动物细胞的基本策略。
将机械传感与合成细胞的生化反应耦合起来,这将为其他领域开辟新的途径。
对开发更复杂的类细胞系统感兴趣的研究人员,其结果将具有重要意义。
立即产生积极影响,因为它将支持机械敏感通道可以感知的想法
由于剪切应力和长期的侧向膜张力,因为它们奠定了基础
工程合成细胞具有其他传感能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allen Po-Chih Liu其他文献
Allen Po-Chih Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Allen Po-Chih Liu', 18)}}的其他基金
Sensing and modulating the chemokine environment with synthetic cells
用合成细胞感知和调节趋化因子环境
- 批准号:
10566980 - 财政年份:2023
- 资助金额:
$ 27.05万 - 项目类别:
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 27.05万 - 项目类别:
Standard Grant
Development of a mechanosensitive synthetic cell for mediating intercellular communication.
开发用于介导细胞间通讯的机械敏感合成细胞。
- 批准号:
10544399 - 财政年份:2020
- 资助金额:
$ 27.05万 - 项目类别:
Development of a mechanosensitive synthetic cell for mediating intercellular communication.
开发用于介导细胞间通讯的机械敏感合成细胞。
- 批准号:
10722432 - 财政年份:2020
- 资助金额:
$ 27.05万 - 项目类别:
Development of a mechanosensitive synthetic cell for mediating intercellular communication.
开发用于介导细胞间通讯的机械敏感合成细胞。
- 批准号:
10396123 - 财政年份:2020
- 资助金额:
$ 27.05万 - 项目类别:
Reconstituting Biology – a Chart to Minimal Cells
重建生物学——最小细胞图表
- 批准号:
2013809 - 财政年份:2020
- 资助金额:
$ 27.05万 - 项目类别:
Standard Grant
Development of a mechanosensitive synthetic cell for mediating intercellular communication.
开发用于介导细胞间通讯的机械敏感合成细胞。
- 批准号:
10251872 - 财政年份:2020
- 资助金额:
$ 27.05万 - 项目类别:
Development of a mechanosensitive synthetic cell for mediating intercellular communication.
开发用于介导细胞间通讯的机械敏感合成细胞。
- 批准号:
10643814 - 财政年份:2020
- 资助金额:
$ 27.05万 - 项目类别:
ST2: Programmable Interfaces- Exploring the Intersection of Synthetic Biology, Biomaterials, and Soft Matter
ST2:可编程接口 - 探索合成生物学、生物材料和软物质的交叉点
- 批准号:
1939310 - 财政年份:2019
- 资助金额:
$ 27.05万 - 项目类别:
Standard Grant
Collaborative Research: Bottom-up Construction of a Synthetic Neuron and Programmable Neuronal Network
合作研究:合成神经元和可编程神经元网络的自下而上构建
- 批准号:
1935265 - 财政年份:2019
- 资助金额:
$ 27.05万 - 项目类别:
Standard Grant
相似国自然基金
多酚功能化壳聚糖基组织粘合剂构建及其能量耗散机制探究
- 批准号:82302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氮杂环丙烷基聚多硫化物可逆粘合剂的分子设计与制备
- 批准号:22378080
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
聚电解质络合作用调控的高初黏性大豆蛋白粘合剂构建及增强机制研究
- 批准号:52303059
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于短肽诱导蚕丝蛋白组装的可控粘附生物粘合剂的制备及粘附性能研究
- 批准号:52303272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载MUR仿生脂质体粘合剂靶向调控荷菌巨噬细胞IFI204/ARMCX3/Caspase-11焦亡抑制创伤性骨髓炎发生的机制研究
- 批准号:82372421
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 27.05万 - 项目类别:
Determining the role of cellular forces in endoderm differentiation and development
确定细胞力在内胚层分化和发育中的作用
- 批准号:
10527198 - 财政年份:2022
- 资助金额:
$ 27.05万 - 项目类别:
The role of neuro-immune synapse in macrophage migration
神经免疫突触在巨噬细胞迁移中的作用
- 批准号:
10359594 - 财政年份:2022
- 资助金额:
$ 27.05万 - 项目类别:
Determining the role of cellular forces in endoderm differentiation and development
确定细胞力在内胚层分化和发育中的作用
- 批准号:
10677673 - 财政年份:2022
- 资助金额:
$ 27.05万 - 项目类别:
Determining the role of cellular forces in endoderm differentiation and development
确定细胞力在内胚层分化和发育中的作用
- 批准号:
10677673 - 财政年份:2022
- 资助金额:
$ 27.05万 - 项目类别: