Commodity Hardware Acceleration of Popular Modeling Software for Structural Biolo
结构 Biolo 流行建模软件的商品硬件加速
基本信息
- 批准号:8147612
- 负责人:
- 金额:$ 28.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-15 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAlgorithmsAntibioticsAreaBehaviorBiomechanicsBiomedical ComputingBiophysicsCarbon NanotubesCell physiologyCellsCellular StructuresCellular biologyChargeChemistryClinical ResearchComplementComputer SimulationComputer softwareComputersDataDevelopmentDevicesDiagnosticDiseaseElectrical EngineeringElectron MicroscopyEvaluationFeedbackFundingGenerationsGenesHealthHereditary DiseaseHourInvestigationInvestmentsLaboratoriesLaboratory StudyMapsMechanicsMedicalMethodsMicroscopeMicroscopicMissionModelingMolecular StructureMonitorNanotechnologyPerformancePharmaceutical PreparationsPhysicsProcessPropertyResearchResearch PersonnelResolutionRunningSimulateSolutionsSolventsSpeedStructural ModelsStructureSurfaceTechnologyTimeUnited States National Institutes of HealthVirus Diseasesbasebody mechanicscomputer programcomputer sciencecomputerized toolscostdensitydesignengineering designflexibilitygraduate studentimprovedmathematical algorithmmolecular dynamicsnanodevicenanoengineeringnanomedicinenanoscalenanosensorsneuronal cell bodyprogramsquantum chemistryresponsesensorsimulationstructural biologytooluser-friendly
项目摘要
DESCRIPTION (provided by applicant): Laboratory and clinical studies of cells maintaining the body's health and battling disease are increasingly complemented by computational modeling of cellular processes and diagnostic tools. Modeling involving nanoscale structures and processes has been particularly successful in structural cell biology, cellular mechanics, and in nanosensor development. The PI's laboratory develops a software package, NAMD/VMD, that is used by thousands of NIH-funded researchers as well as by pharmacological and biotechnological companies studying viral infection, developing new antibiotics, and providing faster gene sequencing methods. The impact of the computational tools, which provide profound microscopic views not available otherwise, is often limited by computing speed, hardware costs, and modeling ac- curacy. Recent dramatic advances in computer technology, namely multi-core processors and graphics processing units (GPUs), promise now a means of accelerating biomedical computing, while decreasing hardware cost and permitting more accurate simulations. The main investment needed is programmer ingenuity and time, as effective programming of multi-core processors requires different strategies and algorithms than used for conventional processing units. The PI and two co-PIs, long time collaborators with complementary backgrounds in biophysics, computer science, and electrical engineering, seek funds to hire two programmers and a graduate student research assistant, to program multi-core processors and serve three missions in biomedicine: the determination of very large cellular structures as they arise in cellular processes, the investigation of mechanical mechanisms underlying cellular dynamics, and the improvement of nanodevice simulation accuracy to better guide the development of sensors in medical diagnostics. Five computational bottlenecks will be addressed through revolutionary solutions involving multi-core capable software. In structural biology the merging of crystallographic and electron microscopy data through so-called grid forces and cross-correlation optimization will be greatly enhanced; in micro-mechanics of the body's cells interactive simulation and better analysis will permit investigators to feel and see simulated cellular mechanical responses on-the-fly, rather than only after hours or days; in nanomedicine an atomic resolution computational microscope will offer design engineers more accurate views of device behavior than ever achieved before. The approach taken combines biomedicine with physics, chemistry, parallel programming, and computer processing unit know-how in a unique way. Software improvements achieved will not only serve the stated applications, but many further applications of modern computational biomedicine.
PUBLIC HEALTH RELEVANCE: This project seeks to increase the speed and reduce the cost of biomedical computing through new software that can run on a new generation of computer chips. The software, presently already in use by thousands of investigators, aids in understanding how cells maintain health and battle disease, in developing drugs like new antibiotics, and in designing sensors for genetic diseases. The planned advances require new mathematical algorithms and programming strategies.
描述(由申请人提供):维持身体健康和对抗疾病的细胞的实验室和临床研究日益得到细胞过程和诊断工具的计算模型的补充。涉及纳米级结构和过程的建模在结构细胞生物学、细胞力学和纳米传感器开发中特别成功。 PI 的实验室开发了一个软件包 NAMD/VMD,该软件包被 NIH 资助的数千名研究人员以及研究病毒感染、开发新抗生素和提供更快基因测序方法的药理学和生物技术公司使用。计算工具提供了其他方式无法获得的深刻的微观视图,其影响通常受到计算速度、硬件成本和建模精度的限制。计算机技术(即多核处理器和图形处理单元 (GPU))最近取得的巨大进步,有望提供一种加速生物医学计算的方法,同时降低硬件成本并允许更准确的模拟。所需的主要投资是程序员的聪明才智和时间,因为多核处理器的有效编程需要与传统处理单元不同的策略和算法。该 PI 和两名联合 PI 是在生物物理学、计算机科学和电气工程领域具有互补背景的长期合作者,他们寻求资金聘请两名程序员和一名研究生研究助理,对多核处理器进行编程并服务于生物医学领域的三项任务:确定细胞过程中出现的非常大的细胞结构,研究细胞动力学的机械机制,以及提高纳米器件模拟精度,以更好地指导医疗诊断中传感器的开发。五个计算瓶颈将通过涉及多核软件的革命性解决方案得到解决。在结构生物学中,通过所谓的网格力和互相关优化来合并晶体学和电子显微镜数据将大大增强;在人体细胞的微观力学中,交互式模拟和更好的分析将使研究人员能够即时感受和看到模拟的细胞机械反应,而不仅仅是在数小时或数天后;在纳米医学中,原子分辨率计算显微镜将为设计工程师提供比以往更准确的设备行为视图。所采取的方法以独特的方式将生物医学与物理、化学、并行编程和计算机处理单元专业知识结合起来。所实现的软件改进不仅将服务于所述应用,还将服务于现代计算生物医学的许多进一步应用。
公共健康相关性:该项目旨在通过可在新一代计算机芯片上运行的新软件来提高生物医学计算的速度并降低成本。该软件目前已被数千名研究人员使用,有助于了解细胞如何保持健康和对抗疾病、开发新抗生素等药物以及设计遗传疾病传感器。计划中的进步需要新的数学算法和编程策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Klaus Schulten其他文献
Klaus Schulten的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Klaus Schulten', 18)}}的其他基金
DETERMINING THE PATHWAY OF NASCENT-PROTEIN INSERTION THROUGH THE PROTEIN-CONDUC
确定新生蛋白通过蛋白质传导插入的途径
- 批准号:
8364332 - 财政年份:2011
- 资助金额:
$ 28.98万 - 项目类别:
SIMULATIONS OF SUPRAMOLECULAR BIOLOGICAL STRUCTURES
超分子生物结构的模拟
- 批准号:
8364241 - 财政年份:2011
- 资助金额:
$ 28.98万 - 项目类别:
Commodity Hardware Acceleration of Popular Modeling Software for Structural Biolo
结构 Biolo 流行建模软件的商品硬件加速
- 批准号:
8300818 - 财政年份:2011
- 资助金额:
$ 28.98万 - 项目类别:
Commodity Hardware Acceleration of Popular Modeling Software for Structural Biolo
结构 Biolo 流行建模软件的商品硬件加速
- 批准号:
8657059 - 财政年份:2011
- 资助金额:
$ 28.98万 - 项目类别:
Commodity Hardware Acceleration of Popular Modeling Software for Structural Biolo
结构 Biolo 流行建模软件的商品硬件加速
- 批准号:
8465244 - 财政年份:2011
- 资助金额:
$ 28.98万 - 项目类别:
SIMULATIONS OF SUPRAMOLECULAR BIOLOGICAL STRUCTURES
超分子生物结构的模拟
- 批准号:
8171819 - 财政年份:2010
- 资助金额:
$ 28.98万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Implementation of an impact assessment tool to optimize responsible stewardship of genomic data in the cloud
实施影响评估工具以优化云中基因组数据的负责任管理
- 批准号:
10721762 - 财政年份:2023
- 资助金额:
$ 28.98万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 28.98万 - 项目类别:
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 28.98万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 28.98万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 28.98万 - 项目类别: