Resonator Approach to Pulsed Dynamic Nuclear Polarization of Membrane Proteins
膜蛋白脉冲动态核极化的谐振器方法
基本信息
- 批准号:10004143
- 负责人:
- 金额:$ 35.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-18 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:Aluminum OxideAmplifiersBenchmarkingBiologicalBiological ProcessBiomedical ResearchBiomedical TechnologyCapsid ProteinsCellsCeramicsComputer SimulationCrystallizationDataDetectionDevelopmentDiamondDiseaseDrug TargetingElectron Spin Resonance SpectroscopyElectronsEnvironmentExhibitsFreezingFrequenciesGramicidinHeatingHigh temperature of physical objectHydration statusLabelLipid BilayersLipidsMagnetismMeasuresMembraneMembrane ProteinsMetalsMethodologyMethodsModelingModernizationMolecularNanoporousNatureNuclearNuclear Magnetic ResonancePatternPeptidesPhasePhysiologic pulsePhysiologicalPositioning AttributeRadiationRelaxationResearch PersonnelRiskSamplingSchemeSeriesSignal TransductionSourceSpin LabelsStructureSurfaceTechniquesTechnologyTemperatureTestingTimeWaterabsorptionattenuationbasecryogenicsdesigndesign and constructionexperienceexperimental studyhigh riskimprovedinnovationinstrumentinstrumentationinterestmacromoleculenanoporenovelphotonicsprototyperadio frequencyreconstitutionsolid statesolid state nuclear magnetic resonancestructural biologysuccesstool
项目摘要
Nuclear Magnetic Resonance (NMR) is an exceptionally versatile and informative spectroscopic technique for
atomic-level structure-function studies of biological macromolecules in their native-like environments. In
particular, solid-state NMR allows one to study membrane proteins in lipid bilayers under the conditions
approaching those encountered in the biological cells. Membrane proteins are of particular interest for
biomedicine being implicated in numerous biological processes and diseases and constituting nearly 50% of
the modern drug targets. However, low polarization of the nuclear spins limits NMR sensitivity and represents
the major roadblock for expanding its use in structural biology. Dynamic nuclear polarization (DNP) can
potentially boost sensitivity of NMR by up to several hundred times via irradiating the sample with mm-waves
at matching frequencies. Despite significant progress, DNP NMR of biological samples above the freezing
temperatures remains to be a challenge mainly because of short relaxation times of the nuclear and electron
spins at higher temperatures and excessive sample heating by mm-waves. We propose to overcome these
fundamental problems by constructing a novel 200 GHz/300 MHz DNP spectrometer which will be based on
resonant mm-wave structures and will operate in a pulse mode for DNP transfer vs. the continuous mode
currently in use. The key innovation is our recently invented mm-wave photonic band-gap resonators which
increase the sample volume by approximately 1-2 orders of magnitude as compared to the existing resonator
cavity designs. We propose to increase the quality factors of such resonators from Q=200 as demonstrated for
the prototype to at least Q=1,000 in order to boost mm-wave field at the sample. Achieving these higher mm-
wave fields will be essential for enabling advanced pulse schemes for DNP that will provide maximum NMR
signal enhancements while minimizing sample heating. The spectrometer development will be guided by
computer simulations of mm-wave fields and pulse DNP sequences, and will be based on the existing low-
power prototype operating in a continuous DNP mode yielding record-breaking preliminary data obtained at
room temperature. The spectrometer will operate over a broad temperature range (100-330 K), and multi-
resonance probeheads will be optimized for hydrated biological samples above the freezing point. The new
DNP technology will be applied to a series of biological samples including hydrated membrane proteins aligned
by nanoporous substrates. Success of the project will be built upon the extensive expertise of the two
collaborating PIs (Nevzorov and Smirnov) in designing and constructing a room temperature DNP NMR
spectrometer prototype based on solid-state mm-wave components. The new pulsed DNP spectrometer will
open up unexplored perspectives with regard to developing novel pulse methodologies for DNP-enhanced
solid-state NMR of membrane proteins. This is a high-gain high-risk project where the risk is leveraged by the
extensive experience of the investigators and the highly encouraging preliminary results.
1
核磁共振 (NMR) 是一种用途广泛、信息丰富的光谱技术,可用于
生物大分子在其天然环境中的原子级结构功能研究。在
特别是,固态核磁共振允许人们在一定条件下研究脂质双层中的膜蛋白
接近生物细胞中遇到的那些。膜蛋白特别令人感兴趣
生物医学与许多生物过程和疾病有关,占生物医学的近 50%
现代药物靶标。然而,核自旋的低极化限制了 NMR 灵敏度并代表
扩大其在结构生物学中的应用的主要障碍。动态核极化 (DNP) 可以
通过用毫米波照射样品,可将 NMR 的灵敏度提高数百倍
在匹配的频率。尽管取得了重大进展,生物样品的 DNP NMR 仍高于冰点
温度仍然是一个挑战,主要是因为核和电子的弛豫时间很短
在较高温度下旋转并通过毫米波过度加热样品。我们建议克服这些
通过构建新型 200 GHz/300 MHz DNP 光谱仪来解决基本问题,该光谱仪将基于
谐振毫米波结构,将在 DNP 传输的脉冲模式下运行,而不是在连续模式下运行
目前正在使用。关键的创新是我们最近发明的毫米波光子带隙谐振器,它
与现有谐振器相比,样品体积增加约1-2个数量级
腔体设计。我们建议从 Q=200 开始增加此类谐振器的品质因数,如下所示
原型至少 Q=1,000,以增强样品处的毫米波场。实现这些更高的目标
波场对于实现 DNP 的先进脉冲方案至关重要,该方案将提供最大的 NMR
信号增强,同时最大限度地减少样品加热。光谱仪的发展将遵循
毫米波场和脉冲 DNP 序列的计算机模拟,并将基于现有的低
在连续 DNP 模式下运行的动力原型产生破纪录的初步数据
室温。该光谱仪可在较宽的温度范围(100-330 K)和多
共振探头将针对冰点以上的水合生物样品进行优化。新的
DNP技术将应用于一系列生物样品,包括水合膜蛋白对齐
通过纳米多孔基材。该项目的成功将建立在两人广泛的专业知识的基础上
与 PI(Nevzorov 和 Smirnov)合作设计和构建室温 DNP NMR
基于固态毫米波组件的光谱仪原型。新型脉冲 DNP 光谱仪将
在开发 DNP 增强型新型脉冲方法方面开辟了未探索的前景
膜蛋白的固态核磁共振。这是一个高收益高风险的项目,风险由
研究人员的丰富经验和非常令人鼓舞的初步结果。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander A. Nevzorov其他文献
Alexander A. Nevzorov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander A. Nevzorov', 18)}}的其他基金
Resonator Approach to Pulsed Dynamic Nuclear Polarization of Membrane Proteins
膜蛋白脉冲动态核极化的谐振器方法
- 批准号:
10242008 - 财政年份:2018
- 资助金额:
$ 35.68万 - 项目类别:
SRLS APPROACH FOR STUDIES ON ORIENTED MEMBRANE PROTEINS BY SOLID-STATE NMR
通过固态核磁共振研究定向膜蛋白的 SRLS 方法
- 批准号:
8364106 - 财政年份:2011
- 资助金额:
$ 35.68万 - 项目类别:
相似国自然基金
基于光学参量放大器的高灵敏量子干涉仪
- 批准号:62305056
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于太赫兹行波管放大器的高效率多路功率合成技术的研究
- 批准号:62371102
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
微波敏感型铁死亡纳米放大器的构建及其增敏肝癌消融-免疫联合治疗的应用与机制研究
- 批准号:82302368
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高增益超宽带CMOS太赫兹放大器关键技术研究
- 批准号:62374026
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
面向超精密电机系统的双降压对称半桥功率放大器噪声机理及抑制策略研究
- 批准号:52307042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Hybrid TMS/MRI system for regionally tailored causal mapping of human cortical circuits and connectivity
混合 TMS/MRI 系统,用于按区域定制人类皮质回路和连接的因果图谱
- 批准号:
10730783 - 财政年份:2023
- 资助金额:
$ 35.68万 - 项目类别:
Technologies for Solid-State NMR Data Collection
固态核磁共振数据采集技术
- 批准号:
10323285 - 财政年份:2021
- 资助金额:
$ 35.68万 - 项目类别:
Technologies for Solid-State NMR Data Collection
固态核磁共振数据采集技术
- 批准号:
10573327 - 财政年份:2021
- 资助金额:
$ 35.68万 - 项目类别:
AND-gated Synthetic Biomarkers for Early Detection of Liver Metastasis
用于早期检测肝转移的 AND 门控合成生物标志物
- 批准号:
10493339 - 财政年份:2021
- 资助金额:
$ 35.68万 - 项目类别:
AND-gated Synthetic Biomarkers for Early Detection of Liver Metastasis
用于早期检测肝转移的 AND 门控合成生物标志物
- 批准号:
10685432 - 财政年份:2021
- 资助金额:
$ 35.68万 - 项目类别: