The molecular study of lipid membrane curvature generation and sustainment mechanisms using all-atom and ultra-coarse-grained simulations.

使用全原子和超粗粒度模拟对脂质膜曲率生成和维持机制进行分子研究。

基本信息

项目摘要

Abstract / Project Summary Diverse cellular functions require lipid membrane remodeling. This remodeling can be due to something as simple as a protein changing conformation to as complex as cell division. Regardless of the purpose, the remodeling energetics are determined by delicate, atomic-level lipid-lipid, protein-lipid, and / or protein-protein interactions that lead to macroscopic membrane shape changes and underline diseases involving local lipid concentration, cellular toxin / virus entry, and how the cell maintains its integrity. This proposal seeks to quantify the physical origins of biologically important membrane remodeling processes and propose important lipid-lipid / protein-lipid interaction motifs using molecular dynamics (MD) and ultra-coarse-grained (UCG) simulations. MD simulations inherently describe delicate protein / lipid interactions albeit on limited time- and length-scales. Some problems cannot be efficiently studied using all-atom MD, and in these cases, the systems will be drastically simplified to access larger time- and length-scale dynamics data. This simplification method is called UCGing herein, and is a physics-based method of extracting dynamics data from all-atom simulations to inform the physics of the UCG model (e.g., a lipid membrane is represented as a fluctuating mesh and proteins are reduced to simple geometric shapes). UCGing acts as a logical bridge between all-atom simulations and experimental techniques that typically access longer time- and length-scales than all-atom MD. This proposal aims to study diverse situations where lipid membrane remodeling is critical and not fully understood: i) interactions between special lipids called gangliosides as well as their strong interactions with cholera toxin; ii) the lipid-lipid and protein-lipid interactions that stabilize large cellular “dimples” called caveolae; and iii) the strong protein-protein interactions that “scaffold” some of the most highly curved lipid membranes in the human body. This work supports the NIGMS mission of understanding fundamental biological structures and processes at the A° ngstrom- to nanometer-scale by describing molecular and energetic detail of important biological events. In addition to studying these biologically meaningful systems, this fellowship will be centered around training. Training will include building and honing scientific, ethical, and personal knowledge that will produce a more mature and readied independent researcher.
摘要/项目摘要 多种细胞功能需要脂质膜重塑,这种重塑可能是由于一些简单的原因造成的。 作为蛋白质改变构象,就像细胞分裂一样复杂,无论其目的如何,重塑。 能量由微妙的原子级脂质-脂质、蛋白质-脂质和/或蛋白质-蛋白质相互作用决定 导致宏观膜形状变化并强调涉及局部脂质浓度的疾病, 细胞毒素/病毒进入,以及细胞如何保持其完整性该提案旨在量化物理。 生物学上重要的膜重塑过程的起源,并提出重要的脂质-脂质/蛋白质-脂质 使用分子动力学(MD)和超粗粒度(UCG)模拟的相互作用基序。 尽管在有限的时间和长度范围内存在一些问题,但本质上描述了微妙的蛋白质/脂质相互作用。 无法使用全原子 MD 进行有效研究,在这些情况下,系统将大大简化为 访问更大的时间和长度尺度的动态数据,这种简化方法在本文中被称为 UCGing,并且被称为 UCGing。 一种基于物理的方法,从全原子模拟中提取动力学数据,以了解 UCG 的物理原理 模型(例如,脂质膜被表示为波动的网格,蛋白质被简化为简单的几何形状 UCGing 充当全原子模拟和通常的实验技术之间的逻辑桥梁。 获得比全原子 MD 更长的时间和长度尺度。该提案旨在研究脂质的不同情况。 膜重塑至关重要,但尚未完全理解:i) 称为神经节苷脂的特殊脂质之间的相互作用 以及它们与霍乱毒素的强烈相互作用;ii) 稳定的脂质-脂质和蛋白质-脂质相互作用; 称为小凹的大细胞“凹坑”;以及 iii) 强大的蛋白质-蛋白质相互作用,“支撑”一些细胞。 这项工作支持 NIGMS 的理解使命。 通过描述分子,了解 A° 埃到纳米尺度的基本生物结构和过程 除了研究这些具有生物学意义的系统之外, 该奖学金将以培训为中心,包括建立和磨练科学、道德和道德。 个人知识将培养出更成熟、更有准备的独立研究人员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Harrison Beaven其他文献

Andrew Harrison Beaven的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

聚谷氨酸基润滑微界面辅助制备脱细胞软骨微粒基生物墨水用于软骨再生
  • 批准号:
    52373146
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于IER3+亚群成纤维细胞样滑膜增生探讨电针调控膝骨关节炎的神经生物学机制
  • 批准号:
    82305367
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于lncRNA NONHSAT042241/hnRNP D/β-catenin轴探讨雷公藤衍生物(LLDT-8)对类风湿关节炎滑膜成纤维细胞功能影响及机制研究
  • 批准号:
    82304988
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
富醌生物炭促进三价铁还原强化人工湿地总氮去除作用机制及调控策略研究
  • 批准号:
    52300213
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
防/除海洋生物粘附高耐久涂层的仿生设计和制造研究
  • 批准号:
    52375296
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Structural Diversity of Caveolins
Caveolins 的结构多样性
  • 批准号:
    10729179
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Bispecific immunotherapeutic delivery system for lung diseases
用于肺部疾病的双特异性免疫治疗递送系统
  • 批准号:
    10720773
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Microbial Control of Host Intercellular Communication
宿主细胞间通讯的微生物控制
  • 批准号:
    10661500
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Biophysical Mechanisms of Cholesterol Homeostasis
胆固醇稳态的生物物理机制
  • 批准号:
    10454109
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Biophysical Mechanisms of Cholesterol Homeostasis
胆固醇稳态的生物物理机制
  • 批准号:
    10117604
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了