Super-resolution Workstation for Imaging Live Biological Nanostructure
用于活体生物纳米结构成像的超分辨率工作站
基本信息
- 批准号:8132941
- 负责人:
- 金额:$ 18.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:BerylliumBiologicalBiological TestingBiomedical EngineeringBiomedical ResearchCellsCommunitiesComputer softwareDendritic SpinesDevelopmentDevice or Instrument DevelopmentDevicesDiagnosticDimensionsDiseaseElectronicsElementsEndoplasmic ReticulumEvaluationEventFacultyFrequenciesFunctional ImagingGoalsImageImaging TechniquesImaging technologyLaser Scanning MicroscopyLasersLifeLightLight MicroscopeLightingMeasuresMechanicsMedicineMicroscopeMicroscopicMicroscopyMicrotubulesMitochondriaMonitorMorphologic artifactsNanostructuresNeckNeuronsNeurosciencesOpticsPatternPerformancePhysicsPopulationPositioning AttributePostdoctoral FellowPropertyRadioResearchResearch InfrastructureResolutionRiceScanningSeriesSiteSpecimenSpeedStructureStudentsSubcellular structureSupervisionSynaptic TransmissionTechniquesTechnologyTestingThree-Dimensional ImagingUniversitiesVertebral columnVesiclebasebioimagingbiological researchbrain tissuecollegedesign and constructionexperienceflexibilityimage processingimprovedinformation processinginstrumentinstrumentationinterestlenslight microscopymembermulti-photonnervous system disorderneural information processingnoveloptical imagingphotonicspostsynapticpresynapticpublic health relevancerelating to nervous systemsoundspatiotemporaltool
项目摘要
DESCRIPTION (provided by applicant): Super-resolution Workstation for Imaging Live Biological Nanostructures. A novel research instrument will be developed for visualizing and measuring living biological structures that are below the resolution limit of conventional light microscopy. This super-resolution microscope does not require any mechano-optical adjustments during image acquisition and will thus allow for fast imaging of sub-resolution structures free of inherent mechanical artifacts. The instrument will combine two established techniques -- the spatial resolution enhancement of Standing Wave Microscopy with the temporal resolution enhancement of Acousto-Optic Laser Scanning. The proposed instrument will be unique in its performance and will be of particular advantage in applications where the dynamics of sub-resolution living biological structures are to be studied. The PI has previously conceived and constructed a series of advanced imaging instruments necessary for his long-term biological research goal to understand information processing in single neurons and small neuronal populations. All developed instruments utilized the PI's expertise with Diffractive Optical Elements, specifically Acousto-Optic Devices. The optical properties of these elements are rapidly adjustable, i.e. with electronically produced sound waves in the radio frequency range, making acousto-optic devices unique building blocks for advanced imaging instrumentation. The proposed imaging workstation will be developed in a two-step approach, resulting in improved spatial resolution in three dimensions. The inertia-free control of the necessary illumination patterns by acousto-optic devices will result in a highly versatile instrument with superior mechanical stability and imaging speed. The proposed workstation for fast super-resolution imaging would be of high importance in biomedical research. It would vastly improve the way important intracellular structures can be visualized and their function monitored, including mitochondria, endoplasmic reticulum, and microtubules. Specifically in experimental Neuroscience such an instrument would support the study of various aspect of synaptic transmission, including presynaptic vesicle clusters and postsynaptic dendritic spine necks. For example, the fragile sub-resolution structure of spine necks is susceptible to changes during development and plasticity, but also to a number of neurological diseases. In general, the availability of the proposed super-resolution imaging capability would be transformational and benefit large communities in the biomedical field.
PUBLIC HEALTH RELEVANCE (provided by the applicant): Although the proposed imaging workstation was conceived for Biomedical Research, it has also great potential as a diagnostic tool. Changes in subcellular structure and function often coincide with various states of numerous diseases. The proposed instrument will allow microscopic inspection and functional testing of subcellular structures in live, non-fixed cellular specimen at unparalleled spatio- temporal resolution.
描述(由申请人提供):用于对活体生物纳米结构进行成像的超分辨率工作站。将开发一种新颖的研究仪器,用于可视化和测量低于传统光学显微镜分辨率极限的活体生物结构。这种超分辨率显微镜在图像采集过程中不需要任何机械光学调整,因此可以对亚分辨率结构进行快速成像,而不会产生固有的机械伪影。该仪器将结合两种成熟的技术——驻波显微镜的空间分辨率增强和声光激光扫描的时间分辨率增强。所提出的仪器将具有独特的性能,并且在研究亚分辨率活体生物结构动力学的应用中具有特别的优势。 PI 之前构思并构建了一系列先进的成像仪器,这些仪器是其长期生物学研究目标所必需的,即了解单个神经元和小型神经元群体的信息处理。所有开发的仪器都利用了 PI 在衍射光学元件(特别是声光器件)方面的专业知识。这些元件的光学特性可以快速调节,即通过电子方式产生射频范围内的声波,使声光设备成为先进成像仪器的独特构建模块。拟议的成像工作站将分两步开发,从而提高三个维度的空间分辨率。通过声光装置对必要的照明模式进行无惯性控制将产生具有卓越机械稳定性和成像速度的高度通用的仪器。拟议的快速超分辨率成像工作站在生物医学研究中具有非常重要的意义。它将极大地改善重要细胞内结构的可视化及其功能监测的方式,包括线粒体、内质网和微管。特别是在实验神经科学中,这样的仪器将支持突触传递各个方面的研究,包括突触前囊泡簇和突触后树突棘颈。例如,脊柱颈部脆弱的亚分辨率结构很容易在发育和可塑性过程中发生变化,而且还容易受到许多神经系统疾病的影响。总的来说,所提出的超分辨率成像能力的可用性将是变革性的,并使生物医学领域的大型社区受益。
公共健康相关性(由申请人提供):虽然拟议的成像工作站是为生物医学研究而设想的,但它作为诊断工具也具有巨大的潜力。亚细胞结构和功能的变化常常与多种疾病的不同状态同时发生。所提出的仪器将能够以无与伦比的时空分辨率对活体、非固定细胞样本中的亚细胞结构进行显微检查和功能测试。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PETER SAGGAU其他文献
PETER SAGGAU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PETER SAGGAU', 18)}}的其他基金
ALL-OPTICAL HIGH-THROUGHPUT FUNCTIONAL CONNECTIVITY MAPPING USING ADVANCED MICROS
使用 Advanced Micros 进行全光高通量功能连接映射
- 批准号:
8675233 - 财政年份:2013
- 资助金额:
$ 18.47万 - 项目类别:
ALL-OPTICAL HIGH-THROUGHPUT FUNCTIONAL CONNECTIVITY MAPPING USING ADVANCED MICROS
使用 Advanced Micros 进行全光高通量功能连接映射
- 批准号:
8582420 - 财政年份:2013
- 资助金额:
$ 18.47万 - 项目类别:
Super-resolution Workstation for Imaging Live Biological Nanostructure
用于活体生物纳米结构成像的超分辨率工作站
- 批准号:
7945128 - 财政年份:2010
- 资助金额:
$ 18.47万 - 项目类别:
Optogenetic Tools for in vivo Analysis of Cortical Circuit Plasticity
用于皮层回路可塑性体内分析的光遗传学工具
- 批准号:
7695529 - 财政年份:2009
- 资助金额:
$ 18.47万 - 项目类别:
Optogenetic Tools for in vivo Analysis of Cortical Circuit Plasticity
用于皮层回路可塑性体内分析的光遗传学工具
- 批准号:
7914333 - 财政年份:2009
- 资助金额:
$ 18.47万 - 项目类别:
Training in Theoretical and Computational Neuroscience
理论和计算神经科学培训
- 批准号:
7286915 - 财政年份:2007
- 资助金额:
$ 18.47万 - 项目类别:
Training in Theoretical and Computational Neuroscience
理论和计算神经科学培训
- 批准号:
7622154 - 财政年份:2007
- 资助金额:
$ 18.47万 - 项目类别:
Training in Theoretical and Computational Neuroscience
理论和计算神经科学培训
- 批准号:
7447333 - 财政年份:2007
- 资助金额:
$ 18.47万 - 项目类别:
Training in Theoretical and Computational Neuroscience
理论和计算神经科学培训
- 批准号:
7886513 - 财政年份:2007
- 资助金额:
$ 18.47万 - 项目类别:
Training in Theoretical and Computational Neuroscience
理论和计算神经科学培训
- 批准号:
8104229 - 财政年份:2007
- 资助金额:
$ 18.47万 - 项目类别:
相似国自然基金
基于Bacillus subtilis 细胞传感器介导的肠道环境中结直肠癌相关生物标志物的动态检测策略
- 批准号:82372355
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
CRISPR传感技术对稻田微生物甲基汞关键基因的检测机制研究
- 批准号:42377456
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
一种用于生物呼吸标记物检测的中红外全固态超短脉冲激光器的研究
- 批准号:62305188
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于微流控芯片的赤潮微藻及其生物毒素同步快速定量检测研究
- 批准号:42307568
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于镍纳米粒子催化新型生物传感器研制及应用于中药残留检测
- 批准号:82360857
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Predictive Models of Beryllium Sensitization and Chronic Beryllium Disease
铍致敏和慢性铍病的预测模型
- 批准号:
10736862 - 财政年份:2023
- 资助金额:
$ 18.47万 - 项目类别:
Using Multi-Omics to Define Regulators and Drivers of Granulomatous Inflammation and Chronic Beryllium Disease
使用多组学来定义肉芽肿性炎症和慢性铍病的调节因素和驱动因素
- 批准号:
10569103 - 财政年份:2022
- 资助金额:
$ 18.47万 - 项目类别:
Using Multi-Omics to Define Regulators and Drivers of Granulomatous Inflammation and Chronic Beryllium Disease
使用多组学来定义肉芽肿性炎症和慢性铍病的调节因素和驱动因素
- 批准号:
10339740 - 财政年份:2022
- 资助金额:
$ 18.47万 - 项目类别:
Laboratory Bench-Top EXAFS with STJ Spectrometer
配备 STJ 光谱仪的实验室台式 EXAFS
- 批准号:
10018070 - 财政年份:2017
- 资助金额:
$ 18.47万 - 项目类别:
Manifold-valued statistical models for longitudinal morphometic analysis in preclinical Alzheimer's disease (AD)
用于临床前阿尔茨海默病 (AD) 纵向形态分析的流形值统计模型
- 批准号:
9170619 - 财政年份:2016
- 资助金额:
$ 18.47万 - 项目类别: