Monitoring cellular redox signaling and oxidant stress in vivo
监测体内细胞氧化还原信号和氧化应激
基本信息
- 批准号:7918913
- 负责人:
- 金额:$ 24.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdenovirusesAffectAgeAnimal Disease ModelsAnimalsAwarenessBehaviorBiological ModelsBreathingBreedingCardiovascular systemCell CommunicationCell Culture TechniquesCell physiologyCellsCysteineCytosolDNADataDiabetes MellitusDiseaseDisease modelElectron TransportElectron Transport Complex IIIEnvironmental air flowEventFluorescenceFluorescence MicroscopyFunctional disorderGasesGenerationsGenesGenomicsHealthHypoxiaInduced MutationInflammationKidney DiseasesKnock-in MouseLeadLearningLifeLipidsLiver diseasesLungMalignant NeoplasmsMeasuresMembraneMethodsMicroscopyMitochondriaMitochondrial MatrixMonitorMusMyocardial IschemiaNeurodegenerative DisordersOrganOutcomeOxidantsOxidation-ReductionOxidative StressOxygenParkinson DiseasePathogenesisPhotonsPhysiologicalPrimary Cell CulturesProcessProteinsPulmonary artery structureReactionReactive Oxygen SpeciesRegulationReperfusion InjuryReporterReporter GenesResearchResearch PersonnelRoleSecond Messenger SystemsSignal TransductionSignal Transduction PathwaySiteSmooth MuscleSmooth Muscle MyocytesStimulusStressStrokeSulfhydryl CompoundsSystemTechnologyTerminator CodonTestingTissue HarvestingTissuesTransgenesTransgenic MiceTransgenic OrganismsVascular Diseasesbasecell injurycell typefree radical oxygenhomologous recombinationin vivointerestmouse Cre recombinasenoveloxidant stressoxidative damageperformance testspublic health relevancerecombinaseresponsesecond messengersensortooltwo-photon
项目摘要
DESCRIPTION (provided by applicant): Healthy cells use low levels of reactive oxygen species (ROS) as second messengers in signal transduction pathways. High levels of ROS cause oxidative damage to proteins, lipids and DNA. Oxidant stress has been implicated in the cellular dysfunction associated with ischemia- reperfusion injury, vascular disease, stroke, diabetes, neurodegenerative diseases, liver disease, renal disease, inflammation, cancer, and other disorders. As the awareness of the role of redox stress in health and disease has grown, the demand for new tools to monitor oxidant stress in vivo has increased. Current methods to assess redox events are limited by their inability to provide quantitative data or spatial information on the subcellular sites of oxidant generation. Moreover, existing probes are generally unsuitable for in vivo studies. New methods to monitor intracellular oxidant stress in intact tissues could enhance our understanding of how cell-cell interactions and tissue microenvironments influence the generation of ROS. We propose to create a new system to detect redox status and oxidative stress in specific cells within intact tissues, using a novel combination of existing methods. In Aim 1 we will create transgenic mice with DNA encoding the redox-sensitive fluorescent protein, RoGFP, inserted at a LoxP-silenced ROSA26 genomic locus. Three lines will be generated, which target the RoGFP sensor to cytosol, mitochondrial matrix, or mitochondrial intermembrane space. In Aim 2 we will activate expression of the RoGFP genes in primary cells cultured from these mice, using Cre recombinase to delete the stop codon. We will confirm correct targeting of the expressed protein, and confirm its function in response to redox stress. In Aim 3 we will breed the RoGFP mice with smooth muscle-specific Cre recombinase mice, to elicit RoGFP expression in pulmonary artery smooth muscle cells in the lung. Using that model system to demonstrate efficacy, we will measure redox changes in smooth muscle cells in the intact lung during ventilation with different concentrations of oxygen. Two-photon microscopy will be used to assess the redox status of the subcellular targeted RoGFP proteins in vivo. These animals will therefore provide exciting new tools that will enable us, and other investigators, to monitor subcellular oxidative stress in intact tissue in diverse cell types and disease models.
Public Health Relevance Statement: Healthy cells in the body use oxygen free radicals (Reactive Oxygen Species, or ROS) to regulate various cellular functions. Excessive levels of ROS disrupt cell function, and they contribute to cellular injury in a large number of diseases. To understand how ROS affect cells, it is essential to monitor their levels. However, current tools are limited in their ability to assess intracellular ROS. We propose to correct this problem by inserting a gene encoding an ROS-sensitive fluorescent protein into mice. When the gene is turned on, the cell will generate a protein that moves to a known intracellular compartment and signals a change in ROS levels by altering its fluorescence. We will turn this gene on in certain types of cells in the mouse, and measure the fluorescence changes using a form of microscopy that can "see" deeply into intact tissues. We will test the performance of this sensor in the lungs, where we will measure the ROS response to changes in the concentration of oxygen that the animal is breathing. However, many other investigators will be able to use the same mice where, by turning on the reporter gene in other cell types, it will be possible to monitor ROS in a wide range of different tissues. Hence, this mouse will provide useful information on ROS levels in a wide range of disease models. The successful outcome of this project is supported by extensive preliminary studies demonstrating the feasibility of each step in the process. The end result should significantly extend our ability to assess ROS in intact tissues, in animal models of disease.
描述(由申请人提供):健康细胞使用低水平的活性氧(ROS)作为信号转导途径中的第二信使。高水平的 ROS 会对蛋白质、脂质和 DNA 造成氧化损伤。氧化应激与与缺血再灌注损伤、血管疾病、中风、糖尿病、神经退行性疾病、肝病、肾病、炎症、癌症和其他疾病相关的细胞功能障碍有关。随着人们对氧化还原应激在健康和疾病中的作用的认识不断增强,对监测体内氧化应激的新工具的需求也随之增加。目前评估氧化还原事件的方法由于无法提供有关氧化剂生成的亚细胞位点的定量数据或空间信息而受到限制。此外,现有的探针通常不适合体内研究。监测完整组织中细胞内氧化应激的新方法可以增强我们对细胞间相互作用和组织微环境如何影响ROS产生的理解。我们建议使用现有方法的新颖组合来创建一个新系统来检测完整组织内特定细胞的氧化还原状态和氧化应激。在目标 1 中,我们将创建转基因小鼠,其 DNA 编码氧化还原敏感荧光蛋白 RoGFP,插入 LoxP 沉默的 ROSA26 基因组位点。将生成三条线,将 RoGFP 传感器靶向细胞质、线粒体基质或线粒体膜间隙。在目标 2 中,我们将使用 Cre 重组酶删除终止密码子,激活从这些小鼠培养的原代细胞中 RoGFP 基因的表达。我们将确认表达蛋白的正确靶向性,并确认其响应氧化还原应激的功能。在目标 3 中,我们将用平滑肌特异性 Cre 重组酶小鼠培育 RoGFP 小鼠,以引发肺部肺动脉平滑肌细胞中的 RoGFP 表达。使用该模型系统来证明功效,我们将测量不同浓度氧气通气期间完整肺中平滑肌细胞的氧化还原变化。双光子显微镜将用于评估体内亚细胞靶向 RoGFP 蛋白的氧化还原状态。因此,这些动物将提供令人兴奋的新工具,使我们和其他研究人员能够监测不同细胞类型和疾病模型中完整组织的亚细胞氧化应激。
公共健康相关声明:体内的健康细胞利用氧自由基(活性氧或 ROS)来调节各种细胞功能。过量的活性氧会破坏细胞功能,并导致许多疾病的细胞损伤。要了解 ROS 如何影响细胞,有必要监测其水平。然而,当前的工具评估细胞内 ROS 的能力有限。我们建议通过将编码 ROS 敏感荧光蛋白的基因插入小鼠体内来纠正这个问题。当基因被打开时,细胞将产生一种蛋白质,该蛋白质移动到已知的细胞内区室,并通过改变其荧光来发出ROS水平变化的信号。我们将在小鼠的某些类型的细胞中打开该基因,并使用一种可以“看到”完整组织深处的显微镜来测量荧光变化。我们将测试该传感器在肺部的性能,测量 ROS 对动物呼吸的氧气浓度变化的反应。然而,许多其他研究人员将能够使用相同的小鼠,通过打开其他细胞类型中的报告基因,将有可能监测各种不同组织中的 ROS。因此,该小鼠将提供有关多种疾病模型中 ROS 水平的有用信息。该项目的成功得到了广泛的初步研究的支持,这些研究证明了该过程中每个步骤的可行性。最终结果将显着扩展我们在疾病动物模型中评估完整组织中 ROS 的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PAUL T SCHUMACKER其他文献
PAUL T SCHUMACKER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PAUL T SCHUMACKER', 18)}}的其他基金
Redox Regulation in the Perinatal Pulmonary Vasculature
围产期肺血管的氧化还原调节
- 批准号:
10018670 - 财政年份:2019
- 资助金额:
$ 24.7万 - 项目类别:
Mechanism of transplanted neonatal cardiac progenitor cells to repair ischemic myocardium
移植新生儿心脏祖细胞修复缺血心肌的机制
- 批准号:
10687826 - 财政年份:2014
- 资助金额:
$ 24.7万 - 项目类别:
Metabolic Regulation of Pulmonary Vascular Remodeling
肺血管重塑的代谢调节
- 批准号:
8990882 - 财政年份:2014
- 资助金额:
$ 24.7万 - 项目类别:
Mechanism of transplanted neonatal cardiac progenitor cells to repair ischemic myocardium
移植新生儿心脏祖细胞修复缺血心肌的机制
- 批准号:
10475588 - 财政年份:2014
- 资助金额:
$ 24.7万 - 项目类别:
Metabolic Regulation of Pulmonary Vascular Remodeling
肺血管重塑的代谢调节
- 批准号:
9197683 - 财政年份:2014
- 资助金额:
$ 24.7万 - 项目类别:
Redox Regulation of Vascular cGMP Signaling in Neonatal Lungs
新生儿肺血管 cGMP 信号传导的氧化还原调节
- 批准号:
9335964 - 财政年份:2011
- 资助金额:
$ 24.7万 - 项目类别:
O2 Sensing in Hypoxic Pulmonary Vasoconstriction
缺氧肺血管收缩中的 O2 传感
- 批准号:
7074609 - 财政年份:2005
- 资助金额:
$ 24.7万 - 项目类别:
O2 Sensing in Hypoxic Pulmonary Vasoconstriction
缺氧肺血管收缩中的 O2 传感
- 批准号:
7447451 - 财政年份:2005
- 资助金额:
$ 24.7万 - 项目类别:
O2 Sensing in Hypoxic Pulmonary Vasoconstriction
缺氧肺血管收缩中的 O2 传感
- 批准号:
7636865 - 财政年份:2005
- 资助金额:
$ 24.7万 - 项目类别:
O2 Sensing in Hypoxic Pulmonary Vasoconstriction
缺氧肺血管收缩中的 O2 传感
- 批准号:
6966821 - 财政年份:2005
- 资助金额:
$ 24.7万 - 项目类别:
相似国自然基金
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
年龄结构和空间分布对艾滋病的影响:建模、分析与控制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机噪声影响下具有年龄结构的布鲁氏菌病动力学行为与最优控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Systems Immunology profiling of respiratory viral infections in vulnerable populations
易感人群呼吸道病毒感染的系统免疫学分析
- 批准号:
10598116 - 财政年份:2022
- 资助金额:
$ 24.7万 - 项目类别:
Role of Astrocytic miR-20a-3p as a Potential Therapeutic for Ischemic Stroke
星形细胞 miR-20a-3p 作为缺血性中风的潜在治疗药物的作用
- 批准号:
10675024 - 财政年份:2021
- 资助金额:
$ 24.7万 - 项目类别:
Role of Astrocytic miR-20a-3p as a Potential Therapeutic for Ischemic Stroke
星形细胞 miR-20a-3p 作为缺血性中风的潜在治疗药物的作用
- 批准号:
10611836 - 财政年份:2021
- 资助金额:
$ 24.7万 - 项目类别:
The Role of Reactive Oxygen Species in Osteocyte Mechano-Transduction and Sclerostin Regulation
活性氧在骨细胞机械传导和硬化素调节中的作用
- 批准号:
10228399 - 财政年份:2021
- 资助金额:
$ 24.7万 - 项目类别:
Epigenetic Regulation of the Hypoxic Response in the Mouse Heart
小鼠心脏缺氧反应的表观遗传调控
- 批准号:
10460449 - 财政年份:2021
- 资助金额:
$ 24.7万 - 项目类别: