Molecular Regulation of Human Dental Stem Cell Properties

人类牙干细胞特性的分子调控

基本信息

  • 批准号:
    7895939
  • 负责人:
  • 金额:
    $ 36.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-05-01 至 2015-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Human postnatal dental stem cells such as dental pulp stem cells (DPSCs) and stem cells from root apical papilla (SCAPs) are unique precursor populations isolated from dental tissues based on the primary characteristics of bone marrow mesenchymal stem cells (MSCs). Like bone marrow MSCs, dental stem cells are self-renewing, multipotent, and clonogenic. They can be induced to differentiate into odontoblast- or osteoblast-like cells and form mineralized nodules in vitro. When implanted into immunodeficient mice, dental stem cells can form dentin- or cementum-like mineralized tissues or related craniofacial structures. Hence dental stem cells may present promising prospects for tooth regeneration and tissue repair. However, currently, the molecular regulation of their differentiation is poorly understood. Histone demethylases are newly-identified enzymes for removing histone methyl markers associated with gene activation or silencing. While they have been implicated in developmental processes and human diseases, it is largely unknown whether and how histone demethylases play a critical role in regulating dental stem cell differentiation. By studying oculofacialcardiodental syndrome (OFCD), a rare human genetic disorder characterized by teeth with extremely long roots (radiculomegaly), we unexpectedly discovered that the transcription co-repressor BCOR (Bcl-6 co-repressor) epigenetically regulates dental stem cell function and differentiation via histone demethylases. In this competing renewal, we hypothesize that histone epigenetic modification plays an important role in the regulation of dental stem cell function and differentiation. To test our hypothesis, we propose three specific aims. In Aim 1, we will explore whether and how BCOR epigenetically represses dental stem cell differentiation by histone modification. In Aim 2, we will determine whether and how BCOR mutation epigenetically de-represses gene transcription and thereby promotes dental stem cell differentiation. These two aims will augment our current work and further define how BCOR mutation promotes dental stem cell differentiation in a pathological condition. In Aim 3, we will explore whether and how a newly identified histone demethylase JMJD3 (JmjC domain-containing 3) promotes gene expression and controls dental stem cell differentiation in healthy conditions. By studying both normal and abnormal dental stem cells, our results may provide new insights into the molecular biology of human dental stem cells. Moreover, as demethylases, being enzymes, can be readily targeted by small molecule inhibitors, our work may help to develop novel strategies for promoting dental and craniofacial tissue regeneration and repair. PUBLIC HEALTH RELEVANCE: Human postnatal dental stem cells are unique precursor populations which are isolated tooth. These cells are capable of differentiating into dentin/bone-like forming cells. When implanted into immunodeficient mice, dental stem cells can form dentin- or cement-like mineralized tissues. Although dental stem cells may present promising application prospects in tooth regeneration and repair, currently, molecular regulation of their fate is poorly understood. Histone demethylases are newly-identified enzymes that remove histone methyl marks associated with gene activation or repression. While they have been implicated in developmental processes and human diseases, it is largely unknown whether and how histone demethylases play a critical role in dental stem cell function. In this application, we propose to examine how chromatin modification by histone demethylases regulates gene expression and dental stem cell differentiation using molecular and genetic approaches. Our results may provide new insights into the molecular biology of human dental stem cells. Moreover, because demethylases, being enzymes, can be readily targeted by small molecule inhibitors, our work may help to develop novel strategies for improving dental and craniofacial tissue regeneration and repair.
描述(由申请人提供):人出生后牙干细胞,如牙髓干细胞(DPSC)和根尖乳头干细胞(SCAP)是基于骨髓间充质干细胞的主要特征从牙组织中分离出来的独特前体细胞群(间充质干细胞)。与骨髓间充质干细胞一样,牙科干细胞具有自我更新、多能性和克隆性。它们可以被诱导分化成成牙本质细胞或成骨细胞样细胞,并在体外形成矿化结节。当植入免疫缺陷小鼠体内时,牙干细胞可以形成牙本质或牙骨质样矿化组织或相关颅面结构。因此,牙干细胞可能为牙齿再生和组织修复带来广阔的前景。然而,目前对其分化的分子调控知之甚少。组蛋白去甲基酶是新发现的酶,用于去除与基因激活或沉默相关的组蛋白甲基标记。虽然组蛋白去甲基酶与发育过程和人类疾病有关,但目前尚不清楚组蛋白去甲基酶是否以及如何在调节牙齿干细胞分化中发挥关键作用。通过研究眼面心齿综合征(OFCD)这种罕见的人类遗传性疾病,其特征是牙齿根极长(牙根肥大),我们意外地发现转录辅阻遏物BCOR(Bcl-6辅阻遏物)在表观遗传上调节牙齿干细胞的功能和分化通过组蛋白去甲基化酶。在这种竞争更新中,我们假设组蛋白表观遗传修饰在牙齿干细胞功能和分化的调节中发挥重要作用。为了检验我们的假设,我们提出了三个具体目标。在目标 1 中,我们将探讨 BCOR 是否以及如何通过组蛋白修饰在表观遗传上抑制牙齿干细胞分化。在目标 2 中,我们将确定 BCOR 突变是否以及如何在表观遗传上抑制基因转录,从而促进牙齿干细胞分化。这两个目标将增强我们当前的工作,并进一步明确 BCOR 突变如何促进病理条件下的牙齿干细胞分化。在目标 3 中,我们将探讨新鉴定的组蛋白去甲基化酶 JMJD3(含 JmjC 结构域 3)是否以及如何在健康条件下促进基因表达并控制牙齿干细胞分化。通过研究正常和异常的牙齿干细胞,我们的结果可能为人类牙齿干细胞的分子生物学提供新的见解。此外,由于去甲基酶作为酶,很容易被小分子抑制剂靶向,因此我们的工作可能有助于开发促进牙齿和颅面组织再生和修复的新策略。 公共卫生相关性:人类出生后牙齿干细胞是独特的前体细胞群,是孤立的牙齿。这些细胞能够分化成牙本质/骨样形成细胞。当植入免疫缺陷小鼠体内时,牙齿干细胞可以形成牙本质或水泥样矿化组织。尽管牙齿干细胞在牙齿再生和修复方面可能具有广阔的应用前景,但目前对其命运的分子调控知之甚少。组蛋白去甲基酶是新发现的酶,可去除与基因激活或抑制相关的组蛋白甲基标记。虽然组蛋白去甲基酶与发育过程和人类疾病有关,但组蛋白去甲基酶是否以及如何在牙齿干细胞功能中发挥关键作用尚不清楚。在本申请中,我们建议使用分子和遗传学方法研究组蛋白去甲基酶对染色质的修饰如何调节基因表达和牙齿干细胞分化。我们的结果可能为人类牙齿干细胞的分子生物学提供新的见解。此外,由于去甲基酶作为酶,很容易被小分子抑制剂靶向,因此我们的工作可能有助于开发改善牙齿和颅面组织再生和修复的新策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CUN-YU WANG其他文献

CUN-YU WANG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CUN-YU WANG', 18)}}的其他基金

Epigenetic regulation of autophagy and stemness of MSCs in skeletal aging
骨骼衰老过程中间充质干细胞自噬和干性的表观遗传调控
  • 批准号:
    10901048
  • 财政年份:
    2023
  • 资助金额:
    $ 36.58万
  • 项目类别:
The Inhibition of HNSCC Growth and Metastasis by Targeting KDM4A
通过靶向 KDM4A 抑制 HNSCC 的生长和转移
  • 批准号:
    10180628
  • 财政年份:
    2021
  • 资助金额:
    $ 36.58万
  • 项目类别:
The Inhibition of HNSCC Growth and Metastasis by Targeting KDM4A
通过靶向 KDM4A 抑制 HNSCC 的生长和转移
  • 批准号:
    10442655
  • 财政年份:
    2021
  • 资助金额:
    $ 36.58万
  • 项目类别:
The Inhibition of HNSCC Growth and Metastasis by Targeting KDM4A
通过靶向 KDM4A 抑制 HNSCC 的生长和转移
  • 批准号:
    10615200
  • 财政年份:
    2021
  • 资助金额:
    $ 36.58万
  • 项目类别:
Targeting Super-Enhancers Suppresses Cancer Stemness and Invasion of HNSCC
靶向超级增强剂抑制癌症干细胞和 HNSCC 的侵袭
  • 批准号:
    10404040
  • 财政年份:
    2020
  • 资助金额:
    $ 36.58万
  • 项目类别:
Molecular and Epigenetic Control of Wnt/b-catenin-mediated oncogenesis by KDM4B
KDM4B 对 Wnt/b-catenin 介导的肿瘤发生的分子和表观遗传控制
  • 批准号:
    10543816
  • 财政年份:
    2020
  • 资助金额:
    $ 36.58万
  • 项目类别:
Targeting Super-Enhancers Suppresses Cancer Stemness and Invasion of HNSCC
靶向超级增强剂抑制癌症干细胞和 HNSCC 的侵袭
  • 批准号:
    10618847
  • 财政年份:
    2020
  • 资助金额:
    $ 36.58万
  • 项目类别:
Targeting Super-Enhancers Suppresses Cancer Stemness and Invasion of HNSCC
靶向超级增强剂抑制癌症干细胞和 HNSCC 的侵袭
  • 批准号:
    10224169
  • 财政年份:
    2020
  • 资助金额:
    $ 36.58万
  • 项目类别:
Molecular and Epigenetic Control of Wnt/b-catenin-mediated oncogenesis by KDM4B
KDM4B 对 Wnt/b-catenin 介导的肿瘤发生的分子和表观遗传控制
  • 批准号:
    9892322
  • 财政年份:
    2020
  • 资助金额:
    $ 36.58万
  • 项目类别:
Molecular and Epigenetic Control of Wnt/b-catenin-mediated oncogenesis by KDM4B
KDM4B 对 Wnt/b-catenin 介导的肿瘤发生的分子和表观遗传控制
  • 批准号:
    10332761
  • 财政年份:
    2020
  • 资助金额:
    $ 36.58万
  • 项目类别:

相似国自然基金

基于Bacillus subtilis 细胞传感器介导的肠道环境中结直肠癌相关生物标志物的动态检测策略
  • 批准号:
    82372355
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
CRISPR传感技术对稻田微生物甲基汞关键基因的检测机制研究
  • 批准号:
    42377456
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
一种用于生物呼吸标记物检测的中红外全固态超短脉冲激光器的研究
  • 批准号:
    62305188
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于微流控芯片的赤潮微藻及其生物毒素同步快速定量检测研究
  • 批准号:
    42307568
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于镍纳米粒子催化新型生物传感器研制及应用于中药残留检测
  • 批准号:
    82360857
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

TET2-mediated epitranscriptomic regulation in leukemia microenvironment
TET2介导的白血病微环境中的表观转录组调控
  • 批准号:
    10801348
  • 财政年份:
    2023
  • 资助金额:
    $ 36.58万
  • 项目类别:
Molecular Mechanisms and In Vivo Impact of Tethered Mucin 1-Influenza Virus Interactions
系留粘蛋白 1-流感病毒相互作用的分子机制和体内影响
  • 批准号:
    10327722
  • 财政年份:
    2021
  • 资助金额:
    $ 36.58万
  • 项目类别:
Molecular Mechanisms and In Vivo Impact of Tethered Mucin 1-Influenza Virus Interactions
系留粘蛋白 1-流感病毒相互作用的分子机制和体内影响
  • 批准号:
    10543836
  • 财政年份:
    2021
  • 资助金额:
    $ 36.58万
  • 项目类别:
Molecular regulation of native hematopoiesis
天然造血的分子调控
  • 批准号:
    10541825
  • 财政年份:
    2016
  • 资助金额:
    $ 36.58万
  • 项目类别:
EPITHELIAL BARRIER DYSFUNCTION AND MUCOSAL INFLAMMATION IN ASTHMA
哮喘中的上皮屏障功能障碍和粘膜炎症
  • 批准号:
    9130246
  • 财政年份:
    2014
  • 资助金额:
    $ 36.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了