Inferring in Vivo Cytoarchitectural Borders in the Medial Temporal Lobe
体内颞叶内侧细胞结构边界的推断
基本信息
- 批准号:7828127
- 负责人:
- 金额:$ 46.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-13 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAffectAlzheimer&aposs DiseaseAmygdaloid structureAreaBackBrainBrain imagingBrain regionBrodmann&aposs areaCell DensityCerebrospinal FluidCharacteristicsClassificationClinicalComplexDataData SetDetectionDevelopmentDiagnostic ImagingDimensionsEarly DiagnosisEvaluationEvolutionFaceGenerationsGleanGoalsGoldHippocampus (Brain)HistologyImageImaging technologyIndividualInterventionLabelLinkLocationLuxol Fast Blue MBSMagnetic Resonance ImagingMapsMechanicsMedialMemoryMethodsMicroanatomyMicroscopyModelingMyelinNeuroanatomyNeurosciencesNoisePatternPhasePopulation StudyProbabilityProceduresProcessPropertyProtocols documentationRelative (related person)Research PersonnelResolutionSamplingScanningSignal TransductionStaining methodStainsStatistical ModelsStructureSurfaceSystemTechniquesTechnologyTemporal LobeTestingThalamic structureTimeTissue SampleTissuesValidationarea striatabaseclinically relevantcostdata acquisitiongray matterhealthy agingimage registrationimprovedin vivomyelinationnervous system disordernovelprogramsrelating to nervous systemtoolultra high resolutionwhite matter
项目摘要
DESCRIPTION (provided by applicant): Standard structural brain imaging protocols result in images that cannot resolve structures smaller than 1- 2mm in size. Achieving significantly higher resolution would be of fundamental clinical and neuroscientific value, as it would allow the in-vivo detection and analysis of cytoarchitectural features of the cortex, as well as substructures of brain regions such as the hippocampus, thalamus and amygdala. Unfortunately, such resolution is extremely difficult to obtain in-vivo, as the signal-to-noise ratio goes down with the third power of the linear dimension of each voxel. While some recent studies have pushed this limit to under 1A mm, this is at the cost of extremely long scan sessions and specialized imaging hardware, and even this is still a coarse resolution relative to what is required to visualize correlates of the cytoarchitecture with MRI. Here we take a different approach, and propose to image ex-vivo tissue samples, both blocks of tissue and whole hemispheres, in which exceedingly high-resolution is obtainable, on the order of lOOujns. In these images, many MR signatures of cytoarchitectural features are apparent, and hence they can be used for the construction of models including these cytoarchitectonically defined boundaries. For those features that are not distinguishable from the MR, we propose to perform histological analysis of the tissue, and use cross modal registration techniques to transfer the information from the histology back to the models. High dimensional mapping procedures are then proposed to map these models, obtained from ultra high-resolution imaging and histology, back to the more standard resolution in-vivo data to predict the probability of a given cytoarchitectural boundary occurring at each location in the in-vivo data. We focus on cortical areas in the medial temporal lobe as they are of great clinical relevance, as they are thought to be one of the earliest loci of Alzheimer's disease, and are critical to normal memory function. The ability to more accurately localize these cortical regions would be a critical step in the early diagnosis of AD, and in the assessment of the efficacy of potential clinical interventions.
描述(由申请人提供):标准结构脑成像协议导致无法解析大小小于1-2mm的结构的图像。实现明显更高的分辨率将具有基本的临床和神经科学价值,因为它可以允许对皮质的细胞构造特征进行体内检测和分析,以及海马,丘脑,丘脑和杏仁核等大脑区域的子结构。不幸的是,这种分辨率极难获得体内,因为信噪比随着每个体素的线性维度的第三强度下降。尽管最近的一些研究将这一限制推到了1A毫米以下,但这是以极其长时间的扫描和专业成像硬件为代价的,即使这仍然是与MRI的细胞划分相关性所需的相对于可视化相关性所需的粗糙分辨率。在这里,我们采用不同的方法,并提议在looujns的顺序上成像组织和整个半球的块,即组织和整个半球的块。在这些图像中,许多细胞结构特征的MR签名显而易见,因此可以用于构建包括这些细胞结构定义的边界在内的模型。对于那些与MR无法区分的特征,我们建议对组织进行组织学分析,并使用交叉模态登记技术将信息从组织学转移回模型。然后提出了高维映射程序来映射这些模型,该模型是从超高分辨率成像和组织学获得的,回到了更标准的Vivo内分辨率数据,以预测在维多维沃数据中每个位置发生的给定细胞构造边界的概率。我们专注于内侧颞叶中的皮质区域,因为它们具有很大的临床相关性,因为它们被认为是阿尔茨海默氏病的最早基因座之一,并且对正常记忆功能至关重要。更准确地定位这些皮质区域的能力将是AD早期诊断的关键步骤,以及评估潜在临床干预措施的功效。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-Head Graph Convolutional Network for Structural Connectome Classification.
用于结构连接组分类的多头图卷积网络。
- DOI:10.1007/978-3-031-55088-1_3
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Kazi,Anees;Mora,Jocelyn;Fischl,Bruce;Dalca,AdrianV;Aganj,Iman
- 通讯作者:Aganj,Iman
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce Fischl其他文献
Bruce Fischl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce Fischl', 18)}}的其他基金
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
- 批准号:
10810913 - 财政年份:2023
- 资助金额:
$ 46.55万 - 项目类别:
BRAIN CONNECTS: Mapping Connectivity of the Human Brainstem in a Nuclear Coordinate System
大脑连接:在核坐标系中绘制人类脑干的连接性
- 批准号:
10664289 - 财政年份:2023
- 资助金额:
$ 46.55万 - 项目类别:
Deep Learning for Detecting the Early Anatomical Effects of Alzheimer's Disease
深度学习检测阿尔茨海默病的早期解剖学影响
- 批准号:
10658045 - 财政年份:2023
- 资助金额:
$ 46.55万 - 项目类别:
MGH/HMS Internship in NeuroImaging Analysis
MGH/HMS 神经影像分析实习
- 批准号:
10373401 - 财政年份:2021
- 资助金额:
$ 46.55万 - 项目类别:
MGH/HMS Internship in NeuroImaging Analysis
MGH/HMS 神经影像分析实习
- 批准号:
10525252 - 财政年份:2021
- 资助金额:
$ 46.55万 - 项目类别:
Algorithms for cross-scale integration and analysis
跨尺度集成和分析算法
- 批准号:
10224850 - 财政年份:2020
- 资助金额:
$ 46.55万 - 项目类别:
Algorithms for cross-scale integration and analysis
跨尺度集成和分析算法
- 批准号:
10038179 - 财政年份:2020
- 资助金额:
$ 46.55万 - 项目类别:
Segmenting Brain Structures for Neurological Disorders
分割神经系统疾病的大脑结构
- 批准号:
10295766 - 财政年份:2018
- 资助金额:
$ 46.55万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 46.55万 - 项目类别:
Alzheimer's Disease and Related Dementia-like Sequelae of SARS-CoV-2 Infection: Virus-Host Interactome, Neuropathobiology, and Drug Repurposing
阿尔茨海默病和 SARS-CoV-2 感染的相关痴呆样后遗症:病毒-宿主相互作用组、神经病理生物学和药物再利用
- 批准号:
10661931 - 财政年份:2023
- 资助金额:
$ 46.55万 - 项目类别:
Wisconsin Registry for Alzheimer's Prevention
威斯康星州阿尔茨海默病预防登记处
- 批准号:
10655978 - 财政年份:2023
- 资助金额:
$ 46.55万 - 项目类别:
Visinin-like protein-1 modulation of nicotinic receptors
Visinin 样蛋白-1 烟碱受体的调节
- 批准号:
10712709 - 财政年份:2023
- 资助金额:
$ 46.55万 - 项目类别:
Molecular and cellular underpinnings of limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC)
边缘系统主导的年龄相关 TDP-43 脑病神经病理学变化 (LATE-NC) 的分子和细胞基础
- 批准号:
10739186 - 财政年份:2023
- 资助金额:
$ 46.55万 - 项目类别: