Investigating mechanical regulation of nephrogenesis using viscoelastic biomaterials and kidney organoids

使用粘弹性生物材料和肾类器官研究肾发生的机械调节

基本信息

  • 批准号:
    10705067
  • 负责人:
  • 金额:
    $ 6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Chronic kidney disease (CKD) affects ~15% of adults in the US and is associated with the irreversible loss of nephrons, which form the basic functional unit of the kidney. There is currently no cure for CKD, and treatments such as kidney transplantation and dialysis have a high morbidity and mortality. Developing strategies for repairing or replacing nephrons will address this significant public health problem by providing an alternative treatment for patients and a new model of kidney development and disease for drug screening. Mechanical properties of the extracellular matrix, such as stiffness and viscoelasticity, regulate key aspects of cell behavior that drive nephrogenesis in vivo, including proliferation, differentiation, and migration. However, while the molecular mediators that drive nephrogenesis have been studied extensively, the role of matrix mechanics in nephrogenesis remains unclear. Beyond elucidating the role of biomechanics in kidney development, understanding the functional role of the mechanical microenvironment in nephrogenesis will help to inform engineering strategies to reproduce nephrogenesis in vitro. The goal of this proposal is to integrate 3D viscoelastic alginate hydrogels and kidney organoids to test the hypothesis that the mechanical microenvironment regulates nephrogenesis. The first aim is to determine the role of matrix stiffness and viscoelasticity in the differentiation of human pluripotent stem cells into multipotent nephron progenitor cells and the subsequent cellular organization of nephrons in kidney organoids. The second aim is to investigate how hydrogel architecture affects the morphology and maturation of kidney organoids. These aims will be accomplished by integrating bioengineering, biomaterials, developmental biology, computational modeling, and mechanical characterization techniques. Completion of this project will deepen our understanding of the role of the mechanical microenvironment in the formation of nephrons and will fill a substantial knowledge gap regarding our fundamental understanding of kidney development and stem cell differentiation in vivo. This work will also illuminate design principles for engineering new biomaterials that support nephrogenesis in culture and the regeneration of nephrons in vivo. The training will take place in the Mooney Lab at Harvard University in collaboration with the Mahadevan Lab at Harvard University and the Bonventre Lab at Brigham and Women's Hospital. The training plan will enhance the applicant’s skills in biomaterials design, quantitative biology, and kidney organoid culture and provide a broad understanding of kidney development and disease.
项目概要 慢性肾脏病 (CKD) 影响约 15% 的美国成年人,并与不可逆的肾功能丧失相关。 肾单位,构成肾脏的基本功能单位,目前尚无治愈 CKD 的方法和治疗方法。 肾移植和透析等疾病的发病率和死亡率很高。 修复或更换肾单位将通过提供替代方案来解决这一重大的公共卫生问题 为患者提供治疗以及肾脏发育和疾病药物筛选的新模式。 细胞外基质的机械特性,例如刚度和粘弹性,调节着细胞外基质的关键方面 驱动体内肾发生的细胞行为,包括增殖、分化和迁移。 虽然主要研究了驱动肾发生的分子介质,但基质的作用 除了阐明生物力学在肾脏中的作用外,肾脏发生的机制仍不清楚。 发展,了解机械微环境在肾发生中的功能作用将有助于 为体外复制肾发生的工程策略提供信息 该提案的目标是整合。 3D 粘弹性藻酸盐水凝胶和肾脏类器官来检验机械作用的假设 微环境调节肾发生的第一个目的是确定基质硬度和肾发生的作用。 人多能干细胞分化为多能肾单位祖细胞的粘弹性 第二个目标是研究肾脏类器官中肾单位的后续细胞组织。 水凝胶结构影响肾脏类器官的形态和成熟。 通过整合生物工程、生物材料、发育生物学、计算模型和 机械表征技术。 该项目的完成将加深我们对机械微环境在 肾单位的形成,并将填补我们对肾单位基本理解的巨大知识空白 这项工作还将阐明体内肾脏发育和干细胞分化的设计原则。 工程设计新的生物材料,支持培养中的肾发生和体内肾单位的再生。 培训将在哈佛大学穆尼实验室与 Mahadevan 实验室合作进行 哈佛大学和布莱根妇女医院 Bonventre 实验室的培训计划将增强 申请人在生物材料设计、定量生物学和肾类器官培养方面的技能,并提供广泛的 了解肾脏发育和疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bryan Nerger其他文献

Bryan Nerger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bryan Nerger', 18)}}的其他基金

Investigating mechanical regulation of nephrogenesis using viscoelastic biomaterials and kidney organoids
使用粘弹性生物材料和肾类器官研究肾发生的机械调节
  • 批准号:
    10536817
  • 财政年份:
    2022
  • 资助金额:
    $ 6万
  • 项目类别:

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
  • 批准号:
    10752276
  • 财政年份:
    2024
  • 资助金额:
    $ 6万
  • 项目类别:
Elucidating the role of pericytes in angiogenesis in the brain using a tissue-engineered microvessel model
使用组织工程微血管模型阐明周细胞在大脑血管生成中的作用
  • 批准号:
    10648177
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
  • 批准号:
    10677169
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
  • 批准号:
    10679809
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
  • 批准号:
    10679796
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了