Energetic State and Metabolic Remodeling in Cardiac Hypertrophy and Failure
心脏肥大和衰竭的能量状态和代谢重塑
基本信息
- 批准号:10704664
- 负责人:
- 金额:$ 49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-14 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAdultAerobicAnimalsAortic Valve StenosisBiogenesisCardiacCardiac MyocytesCardiomyopathiesCause of DeathCongestive Heart FailureCytosolDefectDevelopmentDiabetes MellitusDilated CardiomyopathyDiseaseEnergy consumptionEtiologyFatty AcidsFibroblastsFoundationsFunctional disorderGlucoseHeartHeart HypertrophyHeart failureHomeostasisHypertensionHypertrophyImpairmentInheritedKetone BodiesKnowledgeLeadLeftLeft ventricular structureMediatingMetabolicMetabolismMitochondriaMitochondrial DiseasesModelingMolecular MachinesMorphologyMultienzyme ComplexesMusMutationMyocardialMyocardial dysfunctionNeuromuscular DiseasesOxidative PhosphorylationPathologicPatient CarePatientsPerformancePhysiologic intraventricular pressurePlayProductionPumpRattusRespirationRisk FactorsRoleSideStressStructureSystemTestingTherapeuticVirulence Factorsadvanced diseaseascending aortaeffective interventioneffective therapyefficacy testingembryo cultureexperimental studygene therapyheart functionimprovedinnovationinsightmortalitynew therapeutic targetnoveloligomycin sensitivity-conferring proteinoxidationpre-clinicalpreferencepressureprotective effecttargeted treatmenttherapeutic development
项目摘要
Pathological stresses, such as pressure overload in the left ventricles of patients with hypertension and aortic
valve stenosis, cause cardiac hypertrophy, a major risk factor of congestive heart failure. Hypertrophic and
failing hearts shift substrate utilization preference from fatty acids to glucose, ketone bodies, and others.
However, the interplay between the energetic state and the mitochondrial/metabolic remodeling in the
hypertrophic and failing remains incompletely understood. Most of the past studies are based on models with
confounding conditions. F1Fo-ATP synthase is an essential enzyme complex that generates ATP in
mitochondria, thus playing a central role in cellular energetics. Genetic defects of F1Fo-ATP synthase are rare
but deadly because of dilated cardiomyopathy and neuromuscular disorders. How those patients with partial
F1Fo-ATP synthase deficiencies respond to pathological stresses is unclear. It is documented that F1Fo-ATP
synthase is impaired in pathological hearts from patients and animals. Our recent study revealed that
enhancing F1Fo-ATP synthase structure/function using gene therapy restored cardiac function in the
hypertrophied hearts, corroborating the concept of targeting F1Fo-ATP synthase as a novel protective therapy
for heart failure. Our prior studies demonstrated that mice lacking F1Fo-ATP synthase assembly factors, such
as ATPAF1, lead to F1Fo-ATP synthase deficiencies with cardiomyopathy. Therefore, our central hypothesis is
that enhancing F1Fo-ATP synthase capacity to facilitate ATP production efficiency will mitigate
mitochondrial disorders and the ensued cardiac hypertrophy and failure. We propose to test the central
hypothesis with two aims. In aim 1, we will test that the F1Fo-ATP synthase deficiency is an amendable
pathogenic factor in heart failure progression. Experiments will provide evidence to support that partial F1Fo-
ATP synthase deficiency contributes to the pathological progression of heart failure, and gene therapies
correcting the deficiency will slow the heart failure progression. In aim 2, we will define how F1Fo-ATP
synthase capacities directly correlate to mitochondrial homeostasis and metabolic remodeling in
cardiomyocytes of the adult heart. Therefore, this proposed project will provide definitive evidence to support
innovative gene therapy and define the underpinning mechanisms. The proposed study will yield novel insights
into the primary mechanisms underlying metabolic remodeling in cardiac pathological hypertrophy progression.
The preclinical animal study will lay the groundwork for innovative gene therapies, which will significantly
impact patient care.
病理应激,例如高血压和主动脉疾病患者左心室压力超负荷
瓣膜狭窄,引起心脏肥大,是充血性心力衰竭的主要危险因素。肥厚型和
衰竭的心脏将底物利用偏好从脂肪酸转向葡萄糖、酮体等。
然而,能量状态与线粒体/代谢重塑之间的相互作用
肥大和衰弱的原因仍不完全清楚。过去的大部分研究都是基于模型
混杂条件。 F1Fo-ATP 合酶是一种必需的酶复合物,可在
线粒体,因此在细胞能量学中发挥着核心作用。 F1Fo-ATP 合酶的遗传缺陷很少见
但由于扩张型心肌病和神经肌肉疾病而致命。那些患有部分疾病的患者如何
F1Fo-ATP 合酶缺陷对病理应激的反应尚不清楚。据记载,F1Fo-ATP
患者和动物的病理性心脏中合酶受损。我们最近的研究表明
使用基因治疗增强 F1Fo-ATP 合酶结构/功能可恢复心脏功能
肥大的心脏,证实了针对 F1Fo-ATP 合酶作为新型保护性疗法的概念
用于心力衰竭。我们之前的研究表明,小鼠缺乏 F1Fo-ATP 合酶组装因子,例如
如 ATPAF1,导致 F1Fo-ATP 合酶缺陷并导致心肌病。因此,我们的中心假设是
增强 F1Fo-ATP 合酶能力以促进 ATP 生产效率将减轻
线粒体疾病以及随之而来的心脏肥大和衰竭。我们建议测试中央
有两个目标的假设。在目标 1 中,我们将测试 F1Fo-ATP 合酶缺陷是否是可修正的
心力衰竭进展的致病因素。实验将提供证据支持部分 F1Fo-
ATP合酶缺乏导致心力衰竭的病理进展和基因治疗
纠正缺陷将减缓心力衰竭的进展。在目标 2 中,我们将定义 F1Fo-ATP 如何
合酶能力与线粒体稳态和代谢重塑直接相关
成人心脏的心肌细胞。因此,该拟议项目将提供明确的证据来支持
创新基因疗法并定义基础机制。拟议的研究将产生新的见解
探究心脏病病理性肥厚进展中代谢重塑的主要机制。
临床前动物研究将为创新基因疗法奠定基础,这将显着
影响患者护理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
QINGLIN YANG其他文献
QINGLIN YANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('QINGLIN YANG', 18)}}的其他基金
Energetic State and Metabolic Remodeling in Cardiac Hypertrophy and Failure
心脏肥大和衰竭的能量状态和代谢重塑
- 批准号:
10522598 - 财政年份:2022
- 资助金额:
$ 49万 - 项目类别:
Energetic State and Metabolic Remodeling in Cardiac Hypertrophy and Failure
心脏肥大和衰竭的能量状态和代谢重塑
- 批准号:
10522598 - 财政年份:2022
- 资助金额:
$ 49万 - 项目类别:
Improving Mitochondrial Function to Protect against Myocardial Ischemia/Reperfusion
改善线粒体功能以防止心肌缺血/再灌注
- 批准号:
9908162 - 财政年份:2019
- 资助金额:
$ 49万 - 项目类别:
Improving mitochondrial function to protect against myocardial ischemia/reperfusion
改善线粒体功能以防止心肌缺血/再灌注
- 批准号:
9218501 - 财政年份:2017
- 资助金额:
$ 49万 - 项目类别:
Regulation of myocardial lipid and energy homeostasis
心肌脂质和能量稳态的调节
- 批准号:
7683461 - 财政年份:2008
- 资助金额:
$ 49万 - 项目类别:
Effects of Salacia oblonga root extract on cardiac hypertrophy
长圆五层龙根提取物对心脏肥大的影响
- 批准号:
7497576 - 财政年份:2007
- 资助金额:
$ 49万 - 项目类别:
Effects of Salacia oblonga root extract on cardiac hypertrophy
长圆五层龙根提取物对心脏肥大的影响
- 批准号:
7637625 - 财政年份:2007
- 资助金额:
$ 49万 - 项目类别:
Regulation of myocardial lipid and energy homeostasis
心肌脂质和能量稳态的调节
- 批准号:
7568937 - 财政年份:2007
- 资助金额:
$ 49万 - 项目类别:
Regulation of myocardial lipid and energy homeostasis
心肌脂质和能量稳态的调节
- 批准号:
7624429 - 财政年份:2007
- 资助金额:
$ 49万 - 项目类别:
相似国自然基金
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
ActiveCBT for depression: Transforming treatment through exercise priming
ActiveCBT 治疗抑郁症:通过运动启动改变治疗方法
- 批准号:
10629807 - 财政年份:2023
- 资助金额:
$ 49万 - 项目类别:
Nitrite Supplementation to Mitigate Fatigability and Increase Function in Long COVID Patients
补充亚硝酸盐可减轻长期新冠患者的疲劳并增强功能
- 批准号:
10590380 - 财政年份:2023
- 资助金额:
$ 49万 - 项目类别:
Determinants of cardioprotection by circulating prohibitin-1 during sepsis
败血症期间循环抑制素 1 的心脏保护作用的决定因素
- 批准号:
10577340 - 财政年份:2023
- 资助金额:
$ 49万 - 项目类别:
Exercise facilitation of adolescent fear extinction, frontolimbic circuitry, and endocannabinoids
运动促进青少年恐惧消退、额边缘回路和内源性大麻素
- 批准号:
10648773 - 财政年份:2023
- 资助金额:
$ 49万 - 项目类别:
Chrono-exercise is Medicine: Improving Blood Pressure and Vascular Function through Chronotherapy
计时运动是良药:通过计时疗法改善血压和血管功能
- 批准号:
10658613 - 财政年份:2023
- 资助金额:
$ 49万 - 项目类别: