Development of brain-scale neural circuits underlying vertebrate visuomotor transformations
脊椎动物视觉运动转化的大脑规模神经回路的发展
基本信息
- 批准号:10705597
- 负责人:
- 金额:$ 26.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmsAreaBehaviorBehavioralBiological ModelsBlindnessBrainCalciumCellsClassificationCollaborationsCongenital DisordersDataDevelopmentDiseaseEquilibriumEyeFertilizationGenesGoalsHealthHolographyImageIndividualInjuryKnowledgeLifeLinkMaintenanceMammalsMapsMeasuresModelingMotionMotor outputNatural regenerationNatureNeuronsNewborn InfantOpticsPathologic NystagmusPhasePopulation DynamicsProcessRecurrenceResearch DesignResolutionRetinaRetinal DegenerationRetinal Ganglion CellsRoleShapesSignal TransductionStimulusStudy modelsSwimmingTarget PopulationsTestingTimeTrainingVisionVisualVisual MotionVisual SystemZebrafishbehavior testbehavioral responsecritical developmental perioddesigndevelopmental diseaseexperimental studyfascinatehigh dimensionalityinfancyinsightloss of functionmonocularmutantnetwork modelsneuralneural circuitneural correlateneurodevelopmentneurogenesisnoveloptogeneticspredicting responsepredictive modelingpreferencerecurrent neural networkregenerative treatmentresponsesensory inputsight restorationstemtreatment strategytwo photon microscopyvision developmentvisual motorvisual processing
项目摘要
ABSTRACT
It remains considerably challenging to restore vision after developmental disturbances, such as congenital
infantile nystagmus, and after injury or retinal degeneration. This is because the mechanisms establishing
functional connectivity between retinal ganglion cells and their downstream targets in the brain remain poorly
understood. This knowledge gap is partly because observing the functional emergence, stabilization, and
maintenance of entire visual neural circuits is impossible in mammals. This project will leverage the strategic
experimental advantages of the larval zebrafish, a vertebrate model system, to investigate the functional
maturation of a conserved neural circuit underlying a visual orienting behavior, the optomotor response (OMR).
This will form the basis for understanding how congenital disorders exert their effects and how new neurons
added after initial circuit development can support healthy visual processing. Recently, we described the
transformation of retinal visual motion signals into motor output and showed that it required many different types
of neurons distributed across the brain. These neurons can be classified based on their diverse eye- and
direction-specific response profiles, and they collaborate to compute how exactly visual scenes are moving.
Fascinatingly, this collaboration supports stable behavior 5 days after fertilization, even though new neurons are
added to the circuit throughout life. We will test the central hypothesis that after initial formation, the OMR circuit
expands by adding new neurons in balanced response classes, permitting the continued execution of motion-
guided behaviors. In Aim 1, we will test how the development of the behavioral repertoire and associated neural
circuitry is affected by specific disruption of direction-selective retinal input. By training recurrent neural networks,
we will generate predictive models of connectivity between direction-selective retinal ganglion cells and
downstream targets. In Aim 2, we will investigate how the functional neural representations mature, and we will
quantify the stability of individual neuronal responses over time. By computationally tracking all neurons, we will
directly investigate the trajectory of new neuron functional integration into existing circuitry and determine how
the balance of functional profiles varies over time and covaries with behavior. In Aim 3, will use holographic
photostimulation to examine the role of activity in shaping ultimate circuit role for individual neurons. Together,
these experiments will reveal how an entire motion-sensitive vertebrate circuit is functionally assembled,
providing insight about the functional connectivity between retinal ganglion cells and their downstream partners
and about the nature and utility of neurogenesis. These results will inform regenerative treatment strategies for
developmental disorders or injuries to central visual processing areas.
抽象的
在先天性发育障碍等发育障碍后恢复视力仍然相当具有挑战性
婴儿眼球震颤,以及受伤或视网膜变性后。这是因为建立的机制
视网膜神经节细胞与其大脑下游目标之间的功能连接仍然很差
明白了。这种知识差距部分是因为观察功能的出现、稳定和
在哺乳动物中维持整个视觉神经回路是不可能的。该项目将利用战略
幼虫斑马鱼(脊椎动物模型系统)的实验优势,以研究其功能
视觉定向行为(视运动反应(OMR))背后的保守神经回路的成熟。
这将为理解先天性疾病如何发挥其影响以及新神经元如何发挥作用奠定基础
在初始电路开发后添加可以支持健康的视觉处理。最近,我们描述了
将视网膜视觉运动信号转换为运动输出,并表明它需要许多不同的类型
分布在整个大脑的神经元。这些神经元可以根据其不同的眼睛和
特定方向的响应配置文件,并且它们协作计算视觉场景的移动方式。
令人着迷的是,这种合作支持受精后 5 天的稳定行为,尽管新的神经元是
在整个生命周期中添加到电路中。我们将测试中心假设,即在初始形成后,OMR 电路
通过在平衡反应类别中添加新神经元来扩展,允许继续执行运动
引导的行为。在目标 1 中,我们将测试行为库和相关神经系统的发展如何
电路受到方向选择性视网膜输入的特定破坏的影响。通过训练循环神经网络,
我们将生成方向选择性视网膜神经节细胞和
下游目标。在目标 2 中,我们将研究功能神经表征如何成熟,并且我们将
量化个体神经元反应随时间的稳定性。通过计算跟踪所有神经元,我们将
直接研究新神经元功能整合到现有电路中的轨迹,并确定如何
功能特征的平衡随着时间的推移而变化,并且随着行为的变化而变化。在目标 3 中,将使用全息
光刺激来检查活动在塑造单个神经元最终回路作用中的作用。一起,
这些实验将揭示整个运动敏感脊椎动物电路是如何在功能上组装的,
提供有关视网膜神经节细胞及其下游伙伴之间功能连接的见解
以及神经发生的本质和效用。这些结果将为再生治疗策略提供信息
发育障碍或中央视觉处理区域受伤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eva Aimable Naumann其他文献
Eva Aimable Naumann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eva Aimable Naumann', 18)}}的其他基金
Functional connectivity of a brain-scale neural circuit for motion perception
用于运动感知的大脑规模神经回路的功能连接
- 批准号:
10524593 - 财政年份:2022
- 资助金额:
$ 26.72万 - 项目类别:
Development of brain-scale neural circuits underlying vertebrate visuomotor transformations
脊椎动物视觉运动转化的大脑规模神经回路的发展
- 批准号:
10421132 - 财政年份:2022
- 资助金额:
$ 26.72万 - 项目类别:
Real-time, all-optical interrogation of neural microcircuitry in the pretectum
对顶盖神经微电路进行实时、全光学询问
- 批准号:
9978318 - 财政年份:2020
- 资助金额:
$ 26.72万 - 项目类别:
相似国自然基金
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
集装箱港口装卸运输区域基于碳配额碳交易的运营优化模型和算法研究
- 批准号:72271152
- 批准年份:2022
- 资助金额:44 万元
- 项目类别:面上项目
相似海外基金
Real-time Prediction of Adverse Outcomes After Surgery
实时预测手术后不良后果
- 批准号:
10724048 - 财政年份:2023
- 资助金额:
$ 26.72万 - 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 26.72万 - 项目类别:
In vivo Evaluation of Lymph Nodes Using Quantitative Ultrasound
使用定量超声对淋巴结进行体内评估
- 批准号:
10737152 - 财政年份:2023
- 资助金额:
$ 26.72万 - 项目类别:
Orientation Processing Deficits in Amblyopia: Neural Bases to Functional Implications
弱视的定向处理缺陷:神经基础到功能意义
- 批准号:
10649039 - 财政年份:2023
- 资助金额:
$ 26.72万 - 项目类别:
Sex-differences in HIV persistence and Immune Dynamics during Reproductive Aging
生殖衰老过程中艾滋病毒持久性和免疫动态的性别差异
- 批准号:
10838316 - 财政年份:2023
- 资助金额:
$ 26.72万 - 项目类别: