Computational imaging and intelligent specificity (Anastasio)
计算成像和智能特异性(Anastasio)
基本信息
- 批准号:10705173
- 负责人:
- 金额:$ 18.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2027-06-20
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAutomobile DrivingBiologicalBiophotonicsClinicalCollaborationsComputing MethodologiesConfocal MicroscopyCoupledDataData SetDocumentationEquilibriumGoalsImageImage AnalysisImage EnhancementImaging technologyIntelligenceInterference MicroscopyLabelLasersLearningMachine LearningMapsMeasurementMeasuresMethodsMicroscopyModelingNeurosciencesOpticsOutputPerformancePhasePhysicsRefractive IndicesResearchResolutionScanningSemanticsSourceSource CodeSpecificityStainsSupervisionSystemTechnologyThree-Dimensional ImageThree-Dimensional ImagingTrainingTranslationsWidthWorkbiomarker discoverycellular imagingcomputerized toolsdata acquisitiondeep learningdesignfluorescence imagingimage reconstructionimage translationimaging biomarkerimaging modalityimaging scienceimprovedinnovationlearning strategymachine learning methodmicroscopic imagingmultimodalitynovelopen sourcereconstructionsuperresolution imagingsupervised learningtechnology research and developmenttomography
项目摘要
SUMMARY
In this technology research and development (TRD) project, advanced computational and machine learning
methods will be developed that address a variety of needs related to image formation and image analysis in
high-resolution label-free optical microscopy. Computational methods are being rapidly deployed that are
changing the way that measurement data are acquired and improving the formation and analysis of microscopy
images. The potential impact of such methods on the field of label-free microscopy is very high and can optimally
leverage inherent endogenous contrast mechanisms in innovative and informative ways. The developed
methods will serve as enabling technologies for many projects in the proposed center. The research will be
informed by and jointly developed and evaluated with the TRD and driving biological projects. A general theme
of this work is the integration of imaging science, physics- and deep learning (DL)-based approaches to
circumvent the limitations of label-free imaging and the use of objective image quality measures to systematically
validate and refine the developed methods. Three broad classes of computational methods will be investigated
that will enable the (1) image-to-image mapping of label-free images to provide computational specificity,
improved semantic segmentation, and/or enhanced spatial resolution; (2) improved reconstruction of images for
3D cellular imaging; and (3) extraction of biologically relevant information from multi-modality label-free image
data. The Specific Aims of the project are: Aim 1: Image-to-image translation methods for providing specificity,
semantic segmentation, and/or enhanced spatial resolution; Aim 2: Diffraction tomography and inverse
scattering methods for 3D imaging; and Aim 3: Biomarker discovery and multi-modal DL methods.
This successful completion of this project will result in computational and DL methods that will advance a variety
of label-free imaging technologies. These methods will enable improved computational staining, enhance of
spatial resolution, semantic segmentation, 3D image formation, and analysis of multi-modality label-free image
data. They will be systematically validated for use in the biomedical applications that are within the purview of
the proposed P41 center. All source code, trained models and documentation will be made open-source and
shared online.
概括
在这个技术研发(TRD)项目中,先进的计算和机器学习
将开发解决与图像形成和图像分析相关的各种需求的方法
高分辨率无标记光学显微镜。计算方法正在迅速部署,
改变测量数据的获取方式并改进显微镜的形成和分析
图像。此类方法对无标记显微镜领域的潜在影响非常大,并且可以最佳地
以创新和信息丰富的方式利用固有的内源性对比机制。所开发的
方法将作为拟议中心许多项目的支持技术。该研究将是
由 TRD 提供信息并与其共同开发和评估,并推动生物项目。总体主题
这项工作的重点是整合成像科学、物理学和基于深度学习 (DL) 的方法
规避无标记成像的局限性并使用客观的图像质量测量来系统地
验证和完善所开发的方法。将研究三大类计算方法
这将使(1)无标签图像的图像到图像映射能够提供计算特异性,
改进的语义分割和/或增强的空间分辨率; (2) 改进图像重建
3D 细胞成像; (3)从多模态无标签图像中提取生物相关信息
数据。该项目的具体目标是: 目标 1:提供特异性的图像到图像转换方法,
语义分割和/或增强的空间分辨率;目标 2:衍射断层扫描和反演
3D 成像的散射方法;目标 3:生物标志物发现和多模式深度学习方法。
该项目的成功完成将带来计算和深度学习方法,从而推动各种领域的发展
无标记成像技术。这些方法将能够改进计算染色,增强
空间分辨率、语义分割、3D 图像形成以及多模态无标签图像分析
数据。它们将被系统地验证在生物医学应用中的使用,这些应用属于
拟议的 P41 中心。所有源代码、经过训练的模型和文档都将开源并
在线分享。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark A Anastasio其他文献
Mark A Anastasio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark A Anastasio', 18)}}的其他基金
Deep learning technologies for estimating the optimal task performance of medical imaging systems
用于评估医学成像系统最佳任务性能的深度学习技术
- 批准号:
10635347 - 财政年份:2023
- 资助金额:
$ 18.81万 - 项目类别:
A Computational Framework Enabling Virtual Imaging Trials of 3D Quantitative Optoacoustic Tomography Breast Imaging
支持 3D 定量光声断层扫描乳腺成像虚拟成像试验的计算框架
- 批准号:
10367731 - 财政年份:2022
- 资助金额:
$ 18.81万 - 项目类别:
A Computational Framework Enabling Virtual Imaging Trials of 3D Quantitative Optoacoustic Tomography Breast Imaging
支持 3D 定量光声断层扫描乳腺成像虚拟成像试验的计算框架
- 批准号:
10665540 - 财政年份:2022
- 资助金额:
$ 18.81万 - 项目类别:
Advanced image reconstruction for accurate and high-resolution breast ultrasound tomography
先进的图像重建,可实现精确、高分辨率的乳腺超声断层扫描
- 批准号:
10017970 - 财政年份:2019
- 资助金额:
$ 18.81万 - 项目类别:
Development of a Rapid Method for Imaging Regional Ventilation in Small Animals w/o Contrast Agents
开发一种无需造影剂的小动物局部通气成像快速方法
- 批准号:
9888370 - 财政年份:2019
- 资助金额:
$ 18.81万 - 项目类别:
Quantitative histopathology for cancer prognosis using quantitative phase imaging on stained tissues
使用染色组织的定量相位成像进行癌症预后的定量组织病理学
- 批准号:
10443772 - 财政年份:2019
- 资助金额:
$ 18.81万 - 项目类别:
Quantitative histopathology for cancer prognosis using quantitative phase imaging on stained tissues
使用染色组织的定量相位成像进行癌症预后的定量组织病理学
- 批准号:
10703212 - 财政年份:2019
- 资助金额:
$ 18.81万 - 项目类别:
Advanced image reconstruction for accurate and high-resolution breast ultrasound tomography
先进的图像重建,可实现精确、高分辨率的乳腺超声断层扫描
- 批准号:
10252852 - 财政年份:2019
- 资助金额:
$ 18.81万 - 项目类别:
Advanced image reconstruction for accurate and high-resolution breast ultrasound tomography
先进的图像重建,可实现精确、高分辨率的乳腺超声断层扫描
- 批准号:
10442593 - 财政年份:2019
- 资助金额:
$ 18.81万 - 项目类别:
Development of a Rapid Method for Imaging Regional Ventilation in Small Animals w/o Contrast Agents
开发一种无需造影剂的小动物局部通气成像快速方法
- 批准号:
9927856 - 财政年份:2019
- 资助金额:
$ 18.81万 - 项目类别:
相似国自然基金
面向电力储能集群系统的加速退化试验与寿命评估方法研究
- 批准号:62303293
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向计算密集型应用的新型计算范式及其加速器关键技术
- 批准号:62374108
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于任意精度计算架构的量子信息处理算法硬件加速技术研究
- 批准号:62304037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
极端光场条件下正电子束的产生、加速和操控研究
- 批准号:12375244
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
SELENOF is a Novel Tumor Suppressor and a New Target to Overcome Racial Disparity in Breast Cancer.
SELENOF 是一种新型肿瘤抑制剂,也是克服乳腺癌种族差异的新靶点。
- 批准号:
10735662 - 财政年份:2023
- 资助金额:
$ 18.81万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 18.81万 - 项目类别:
Loss of transcriptional homeostasis of genes lacking CpG islands during aging
衰老过程中缺乏 CpG 岛的基因转录稳态丧失
- 批准号:
10814562 - 财政年份:2023
- 资助金额:
$ 18.81万 - 项目类别:
Hybrid Model-Based and Data-Driven Frameworks for High-Resolution Tomographic Imaging
基于混合模型和数据驱动的高分辨率断层成像框架
- 批准号:
10714540 - 财政年份:2023
- 资助金额:
$ 18.81万 - 项目类别:
Defining molecular mechanisms by which stimulant evoked dopamine drives inflammation and neuronal dysfunction in neuroHIV
定义兴奋剂诱发多巴胺驱动神经艾滋病毒炎症和神经元功能障碍的分子机制
- 批准号:
10685160 - 财政年份:2023
- 资助金额:
$ 18.81万 - 项目类别: