Mapping genetic interactions between growth-promoting mutations in yeast
绘制酵母促生长突变之间的遗传相互作用
基本信息
- 批准号:10397048
- 负责人:
- 金额:$ 33.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAntifungal AgentsBar CodesBiological AssayCarbonCell CycleCell PolarityCell physiologyChromosome MappingComplexDataData SetDimensionsDiseaseEnvironmentEnvironmental Risk FactorEssential GenesEvolutionGene TargetingGenesGeneticGenetic VariationGenetic studyGenomeGenome ScanGenotypeGoalsGrowthHumanHuman GeneticsKnowledgeLaboratoriesLinkMalignant NeoplasmsMapsMeasuresMethodsMutationNitrogenOrganismPharmaceutical PreparationsPhenotypePopulationQuantitative GeneticsQuantitative Trait LociResearchResearch PersonnelResourcesSaccharomyces cerevisiaeSourceSurvey MethodologySurveysTemperatureTestingVariantWorkYeastsbasecausal variantcdc Genescell cycle geneticsexperimental studyfitnessgene conservationgene functiongenetic linkagegenetic variantgenome-widegenome-wide analysishuman diseaseinsightknock-downloss of function mutationmutantnovelpreventrapid growththerapeutic targettraittwo-dimensionalyeast genetics
项目摘要
A global understanding of genetic interaction networks, and how network perturbations affect
cellular function, is crucial to preventing and treating human disease. Currently there is a fundamental
gap in our understanding of these networks. Most of our knowledge of genetic interactions comes from
the systematic analysis of double deletion (or knockdown) mutants, primarily in the yeast
Saccharomyces cerevisiae. However, the reality is that loss-of-function mutations are rarely beneficial
and account for less than 5% of the known natural genetic variation. Continued existence of this gap is a
significant problem because many biomedically-important interactions are likely missed by current
methods. The proposed research will identify genetic interactions involving alteration-of-function variants,
variants of essential genes, and higher-order interactions using a novel “Evolve-and-Map” approach,
which combines experimental evolution and quantitative-trait locus mapping. The rationale for this
approach is that experimental evolution efficiently selects for perturbations to the genetic interaction
network that promote rapid growth, and that the genetic variants isolated in this way will be comparable
to the natural genetic variants underlying complex traits in other organisms, including humans. AIM 1 will
leverage the power of evolutionary “replay” experiments to identify a local network of genetic interactions
between cell polarity genes and cell cycle genes. These interactions are strongly supported by
preliminary laboratory evolution experiments, but are largely absent from the double-deletion genetic
interaction network. AIM 2 will extend this analysis genome-wide, producing the largest data set to date
on the genetic interactions between variants that arose in the context of experimental evolution.
Thousands of double-barcoded segregants will be generated from crosses between evolved lines and
their ancestor or between pairs of evolved lines. Each segregant will be genotyped by low-coverage
sequencing and its fitness will be measured using a highly-multiplexed barcode-sequencing-based assay
that is capable of measuring the fitness of thousands of segregants en masse. These data will be used
to detect additive effects as well as pairwise and three-way genetic interactions. Since these mapping
populations contain far fewer variants than is typical in a genome-wide scan, the power of this method to
detect genetic interactions is very high. AIM 3 will determine the extent to which these genetic
interactions persist across environments, including different carbon and nitrogen sources, inhibitory
concentrations of antifungals, and non-optimal temperatures. This will add an important new dimension
to genetic interaction networks. Overall the results obtained from this work will test the ability of the
double-deletion genetic interaction network to predict interactions between growth-promoting variants,
and will advance our understanding of genetic interaction networks and the evolution of complex traits.
对遗传相互作用网络以及网络扰动如何影响的全球理解
细胞功能,对于预防和治疗人类疾病至关重要。
我们对这些网络的理解存在差距,我们对遗传相互作用的大部分了解都来自于此。
主要在酵母中对双缺失(或敲低)突变体的系统分析
然而,现实情况是功能丧失突变很少是有益的。
且占已知自然遗传变异的不到5%,这种差距的持续存在是一个原因。
这是一个重大问题,因为许多生物医学上重要的相互作用可能被当前的技术所遗漏。
拟议的研究将确定涉及功能变异的遗传相互作用,
重要基因的变体,以及使用新颖的“进化和映射”方法的高阶相互作用,
其结合了实验进化和数量性状基因座绘图。
方法是实验进化有效地选择对遗传相互作用的扰动
促进快速生长的网络,并且以这种方式分离的遗传变异将具有可比性
包括人类在内的其他生物体的复杂性状的自然遗传变异。
利用进化“重放”实验的力量来识别遗传相互作用的局部网络
细胞极性基因和细胞周期基因之间的相互作用得到了强有力的支持。
初步的实验室进化实验,但在双缺失遗传实验中基本上没有
AIM 2 将把这种分析扩展到全基因组范围,产生迄今为止最大的数据集。
研究实验进化背景下出现的变异之间的遗传相互作用。
数以千计的双条形码分离子将通过进化品系和
每个分离体将通过低覆盖度进行基因分型。
测序及其适用性将使用基于高度多重条形码测序的测定进行测量
能够测量数千名隔离者的健康状况 这些数据将被使用。
检测加性效应以及成对和三向遗传相互作用。
群体中包含的变异比全基因组扫描中典型的变异要少得多,这种方法的力量
AIM 3 检测遗传相互作用的程度非常高。
相互作用在不同环境中持续存在,包括不同的碳源和氮源、抑制性
抗真菌剂的浓度和非最佳温度这将增加一个重要的新维度。
总体而言,从这项工作中获得的结果将测试遗传相互作用网络的能力。
双缺失遗传相互作用网络来预测促生长变异之间的相互作用,
并将增进我们对遗传相互作用网络和复杂性状进化的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory I Lang其他文献
Gregory I Lang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory I Lang', 18)}}的其他基金
Genetic interactions and the evolution of complex traits in yeast
酵母中的遗传相互作用和复杂性状的进化
- 批准号:
10622677 - 财政年份:2023
- 资助金额:
$ 33.04万 - 项目类别:
Mapping genetic interactions between growth-promoting mutations in yeast
绘制酵母促生长突变之间的遗传相互作用
- 批准号:
10386335 - 财政年份:2018
- 资助金额:
$ 33.04万 - 项目类别:
Mapping genetic interactions between growth-promoting mutations in yeast
绘制酵母促生长突变之间的遗传相互作用
- 批准号:
10590346 - 财政年份:2018
- 资助金额:
$ 33.04万 - 项目类别:
Mapping genetic interactions between growth-promoting mutations in yeast
绘制酵母促生长突变之间的遗传相互作用
- 批准号:
9912776 - 财政年份:2018
- 资助金额:
$ 33.04万 - 项目类别:
相似国自然基金
典型唑类抗真菌剂在斑马鱼中的富集代谢规律及其性腺激素干扰效应研究
- 批准号:21507163
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
群体感应系统阻遏抗真菌剂藤黄绿菌素生物合成的分子机制
- 批准号:31270083
- 批准年份:2012
- 资助金额:82.0 万元
- 项目类别:面上项目
抗真菌剂藤黄绿菌素生物合成自诱导的分子机理研究
- 批准号:30800009
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Defining the Impact of Intra-Species Diversity on C. albicans Biology
定义种内多样性对白色念珠菌生物学的影响
- 批准号:
9979250 - 财政年份:2020
- 资助金额:
$ 33.04万 - 项目类别:
Systematic in vitro and in vivo genetic analysis of C.albicans protein kinases
白色念珠菌蛋白激酶的系统体外和体内遗传分析
- 批准号:
10308519 - 财政年份:2020
- 资助金额:
$ 33.04万 - 项目类别:
Mapping genetic interactions between growth-promoting mutations in yeast
绘制酵母促生长突变之间的遗传相互作用
- 批准号:
10386335 - 财政年份:2018
- 资助金额:
$ 33.04万 - 项目类别:
Mapping genetic interactions between growth-promoting mutations in yeast
绘制酵母促生长突变之间的遗传相互作用
- 批准号:
10590346 - 财政年份:2018
- 资助金额:
$ 33.04万 - 项目类别:
Evolution of drug resistance in Candida glabrata
光滑念珠菌耐药性的演变
- 批准号:
10308481 - 财政年份:2018
- 资助金额:
$ 33.04万 - 项目类别: