Novel Mechanisms of ROS/RNS Signaling Underlying Castration-Resistant Prostate Cancer Emergence and Progression
去势抵抗性前列腺癌发生和进展的 ROS/RNS 信号传导新机制
基本信息
- 批准号:10381045
- 负责人:
- 金额:$ 7.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AgonistAmericanAndrogensApoptosisBiological ProcessBiologyCD44 geneCancer EtiologyCastrationCellsCessation of lifeClinicalComplexCyclic GMPDataData SetDiseaseFDA approvedFailureFreezingGeneticGoldGrowthHormonesHumanHypoxiaIn VitroLaboratoriesMeasuresMetabolicModelingMolecularNatural regenerationOutcomeOxidation-ReductionOxidesPathway interactionsPatientsPeriodicityPharmaceutical PreparationsPharmacologyPhysiologicalPlasmaPre-Clinical ModelPredictive FactorRadiationResearchResistanceSerumSignal TransductionSoluble Guanylate CyclaseSpecimenStressTherapeuticTissuesTumor OxygenationVasodilator Agentsandrogen deprivation therapyandrogen sensitivebonecastration resistant prostate cancerclinically actionableclinically relevantcombinatorialdeprivationefficacy testingin vivomenmouse modelnovelpatient derived xenograft modelpre-clinicalprostate cancer cellprostate cancer modelprostate cancer progressionradiation resistancescreeningstandard of carestem cell biomarkersstem cellssubcutaneoustherapeutic developmenttherapeutically effectivetranscriptometranscriptomicstumortumor hypoxiatumor xenograft
项目摘要
Abstract
Limited understanding of molecular mechanisms underlying castration-resistant prostate cancer (CRPC)is
a barrier to effective therapeutic development for this fatal disease. We identified the nitric oxide receptor
complex, soluble guanylyl cyclase (sGC), as a novel CRPC-inhibitory target via unbiased transcriptomics
screening of an emergent CRPC model developed in our lab. Analyses of human PC datasets and our
preliminary results support that sGC activity is inhibited during CRPC progression from androgen-dependent PC,
and that the sGC complex is oxidatively inactivated. However we find the redox-protective mechanisms induced
by androgen deprivation (AD) to protect CRPC cells from apoptosis provides a therapeutic window during which
sGC can be stimulated to maximal bioactivity. Thus, we hypothesize sGC activity inhibits CRPC growth and
that its stimulation by clinically-approved agonists will be therapeutically beneficial in combination with
standard-of-care AD. Our hypothesis is supported by our strong preclinical data showing that the FDA-approved
vasodilator and sGC agonist, riociguat, reduces in vivo growth of castration-resistant xenograft tumors,
decreases PSA and increases intratumoral cyclic cGMP, the product of sGC signaling and a measure of on-
target riociguat efficacy. Consistent with its biological function, sGC stimulation induces robust tumor
oxygenation as well as loss of the CD44 PC stem cell marker, suggesting that it destroys hypoxic stem cell
niches. Castration resistance is associated with tumor hypoxia and consequent radioresistance. We find that
riociguat increases the tumor-suppressive efficacy of radiation in CRPC xenograft tumors. Our objective is to
comprehensively establish molecular mechanisms underlying how and why stimulating the sGC pathway limits
CRPC growth and progression and to identify factors that predict anti-CRPC efficacy of sGC agonists in
preclinical models. We will assess 1) how mechanisms that control sGC levels and molecular reducing
partners that regenerate oxidized inactive sGC are altered in hormone-sensitive vs. castration-resistant cells,
2) how the physiologic effects of sGC bioactivity enact anti-CRPC outcomes, with consideration of hypoxia-
associated PC- relevant metabolic and redox stress mechanisms, and 3) test the efficacy of sGC agonists in
the spectrum of CRPC disease. Our in vitro studies will utilize robust preclinical models of emergence, growth,
progression and metastatic colonization of the bone milieu. We will utilize genetic and pharmacologic means to
modulate sGC expression and activity in gold standard culture models that recapitulate the relevant clinical
features of CRPC and we will utilize robust subcutaneous, orthotopic and metastatic preclinical mouse models
as well as patient-derived xenografts (PDXs). We will validate key molecular findings in de-identified PC
patient-derived specimens including fixed and frozen tissue, serum, and plasma. Our studies will uncover novel
biology underlying CRPC growth and progression, and potentially provide preclinical rationale for re-purposing
sGC agonists in combinatorial treatments with standard-of-care AD.
抽象的
对去势抵抗性前列腺癌 (CRPC) 分子机制的了解有限
阻碍这种致命疾病的有效治疗发展。我们鉴定出一氧化氮受体
复杂的可溶性鸟苷酸环化酶(sGC),通过无偏转录组学作为新型 CRPC 抑制靶点
筛选我们实验室开发的新兴 CRPC 模型。人类 PC 数据集的分析和我们的
初步结果支持 sGC 活性在雄激素依赖性 PC 进展为 CRPC 期间受到抑制,
并且 sGC 复合物被氧化失活。然而我们发现氧化还原保护机制诱导
通过雄激素剥夺(AD)保护CRPC细胞免于凋亡提供了一个治疗窗口,在此期间
sGC 可以被刺激到最大的生物活性。因此,我们假设 sGC 活性抑制 CRPC 生长并且
临床批准的激动剂的刺激将在治疗上有益于与
标准护理 AD。我们的假设得到了强有力的临床前数据的支持,这些数据表明 FDA 批准的
血管扩张剂和 sGC 激动剂利奥西呱可减少去势抵抗性异种移植肿瘤的体内生长,
降低 PSA 并增加瘤内环化 cGMP,这是 sGC 信号传导的产物,也是一种测量
目标利奥西呱疗效。与其生物学功能一致,sGC 刺激可诱导强健的肿瘤
氧合以及 CD44 PC 干细胞标记物的丢失,表明它会破坏缺氧干细胞
利基市场。去势抵抗与肿瘤缺氧和随之而来的放射抵抗有关。我们发现
利奥西呱可提高放疗对 CRPC 异种移植肿瘤的肿瘤抑制功效。我们的目标是
全面建立如何以及为何刺激 sGC 通路限制的分子机制
CRPC 的生长和进展,并确定预测 sGC 激动剂抗 CRPC 功效的因素
临床前模型。我们将评估 1) 如何控制 sGC 水平和分子减少的机制
激素敏感细胞与去势抵抗细胞中再生氧化非活性 sGC 的伙伴发生了改变,
2) 考虑到缺氧,sGC生物活性的生理效应如何产生抗CRPC结果
相关的 PC 相关代谢和氧化还原应激机制,以及 3) 测试 sGC 激动剂在
CRPC 疾病谱。我们的体外研究将利用强大的临床前模型,包括出现、生长、
骨环境的进展和转移定植。我们将利用遗传和药理学手段
调节黄金标准培养模型中的 sGC 表达和活性,重现相关临床
CRPC 的特点,我们将利用强大的皮下、原位和转移性临床前小鼠模型
以及患者来源的异种移植物(PDX)。我们将验证去识别 PC 中的关键分子发现
患者来源的样本,包括固定和冷冻的组织、血清和血浆。我们的研究将发现新颖的
CRPC 生长和进展的生物学基础,并可能为重新利用提供临床前理由
sGC 激动剂与标准护理 AD 的组合治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Priyamvada Rai其他文献
Priyamvada Rai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Priyamvada Rai', 18)}}的其他基金
Comprehensive Research Experiences to Advance Training and Education (CREATE) for Future Cancer Researchers
全面的研究经验可促进未来癌症研究人员的培训和教育 (CREATE)
- 批准号:
10664861 - 财政年份:2021
- 资助金额:
$ 7.7万 - 项目类别:
Comprehensive Research Experiences to Advance Training and Education (CREATE) for Future Cancer Researchers
全面的研究经验可促进未来癌症研究人员的培训和教育 (CREATE)
- 批准号:
10664861 - 财政年份:2021
- 资助金额:
$ 7.7万 - 项目类别:
Comprehensive Research Experiences to Advance Training and Education (CREATE) for Future Cancer Researchers
全面的研究经验可促进未来癌症研究人员的培训和教育 (CREATE)
- 批准号:
10269302 - 财政年份:2021
- 资助金额:
$ 7.7万 - 项目类别:
Comprehensive Research Experiences to Advance Training and Education (CREATE) for Future Cancer Researchers
全面的研究经验可促进未来癌症研究人员的培训和教育 (CREATE)
- 批准号:
10458769 - 财政年份:2021
- 资助金额:
$ 7.7万 - 项目类别:
Novel Mechanisms of ROS/RNS Signaling Underlying Castration-Resistant Prostate Cancer Emergence and Progression
去势抵抗性前列腺癌发生和进展的 ROS/RNS 信号传导新机制
- 批准号:
10737798 - 财政年份:2020
- 资助金额:
$ 7.7万 - 项目类别:
Novel Mechanisms of ROS/RNS Signaling Underlying Castration-Resistant Prostate Cancer Emergence and Progression
去势抵抗性前列腺癌发生和进展的 ROS/RNS 信号传导新机制
- 批准号:
10212358 - 财政年份:2020
- 资助金额:
$ 7.7万 - 项目类别:
Novel Mechanisms of ROS/RNS Signaling Underlying Castration-Resistant Prostate Cancer Emergence and Progression
去势抵抗性前列腺癌发生和进展的 ROS/RNS 信号传导新机制
- 批准号:
10450017 - 财政年份:2020
- 资助金额:
$ 7.7万 - 项目类别:
Novel Mechanisms of ROS/RNS Signaling Underlying Castration-Resistant Prostate Cancer Emergence and Progression
去势抵抗性前列腺癌发生和进展的 ROS/RNS 信号传导新机制
- 批准号:
10524189 - 财政年份:2020
- 资助金额:
$ 7.7万 - 项目类别:
Novel Mechanisms of ROS/RNS Signaling Underlying Castration-Resistant Prostate Cancer Emergence and Progression
去势抵抗性前列腺癌发生和进展的 ROS/RNS 信号传导新机制
- 批准号:
10647688 - 财政年份:2020
- 资助金额:
$ 7.7万 - 项目类别:
MutT Homolog 1 as a Novel Mediator of RAS Oncogene-Induced Pro-Malignant Pathways
MutT 同源物 1 作为 RAS 癌基因诱导的恶性途径的新型介体
- 批准号:
9249509 - 财政年份:2013
- 资助金额:
$ 7.7万 - 项目类别:
相似海外基金
Estrogen, Astrocyte Reactivity, and Sex Differences in Alzheimer's Disease
阿尔茨海默病中的雌激素、星形胶质细胞反应性和性别差异
- 批准号:
10662993 - 财政年份:2023
- 资助金额:
$ 7.7万 - 项目类别:
Neural and Renal Contributions to Hypertension with Androgen Deprivation Therapy
雄激素剥夺疗法对高血压的神经和肾脏影响
- 批准号:
10662133 - 财政年份:2023
- 资助金额:
$ 7.7万 - 项目类别:
Estrogen, Astrocyte Reactivity, and Sex Differences in Alzheimer's Disease
阿尔茨海默病中的雌激素、星形胶质细胞反应性和性别差异
- 批准号:
10662993 - 财政年份:2023
- 资助金额:
$ 7.7万 - 项目类别:
MicroRNA 374 as an Epigenetic Regulator of Chronic Pain
MicroRNA 374 作为慢性疼痛的表观遗传调节剂
- 批准号:
10747237 - 财政年份:2023
- 资助金额:
$ 7.7万 - 项目类别:
Androgen signaling and sterol metabolism in metastatic prostate cancer: Functional and therapeutic implication
转移性前列腺癌中的雄激素信号传导和甾醇代谢:功能和治疗意义
- 批准号:
10201013 - 财政年份:2021
- 资助金额:
$ 7.7万 - 项目类别: