FMA with Active Integrated Circuits
具有有源集成电路的 FMA
基本信息
- 批准号:7809981
- 负责人:
- 金额:$ 1.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-30 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAmplifiersAnimal ExperimentsAnimalsBiocompatibleBrainBuffersCellsCeramicsChronicClinical TrialsCommunicationCommunitiesComplexComputer softwareDataDeteriorationDevelopmentDevicesElectric StimulationElectrodesElectronicsElementsEvolutionFamilyFeedbackGenerationsGoalsGoldGrantHandHeadImplantImplanted ElectrodesIn VitroIndividualIridiumLaboratoriesLasersLengthLifeMetalsMicroelectrodesMonitorMotorMovementNervous system structureNeuronsNeurosciencesNeurosciences ResearchOperative Surgical ProceduresParalysedPhasePlatinumPopulationProcessProductionProstheses and ImplantsProsthesisProtocols documentationResearch PersonnelScalp structureSensoryServicesSignal TransductionSiliconSimulateSkinSmall Business Innovation Research GrantSpecific qualifier valueStimulusStructureSurfaceSystemTechniquesTechnologyTestingTimeTissuesUnited States National Institutes of HealthVision DisordersWireless Technologyactive methodbasecommercializationcraniumdesigndetectorelectric impedanceflexibilityimplantationinnovationinterestiridium oxidenew technologynext generationpre-clinicalprogramsprototypepublic health relevancerelating to nervous systemresearch studyscale upsensory prosthesissuccesstechnological innovationtooltransmission process
项目摘要
DESCRIPTION (provided by applicant): Implantation of multi-electrode arrays is becoming increasingly more prevalent within the neuroscience research community. Many of these studies have been influenced by the recent interest from the NIH and other agencies toward the development of sensory and motor prosthesis. A motor prosthesis implant must record electrical activity from nearby neural elements, requiring a relatively passive electrode/tissue interface. A sensory prosthesis, however, must employ an electrode system, which can inject stimulus currents into the nervous system without damaging either nearby neural elements or the metal electrode. Both types of implants will require an electrode system that floats on the brain in order to minimize movement of the electrode tip, which can potentially damage nearby cells. Feedback from several neuroscience research groups have expressed the need for commercially available multi-electrode arrays that can penetrate into sub-cortical spaces sometimes extending 4 to 10 mm below the cortical surface. Other researchers have also suggested the need for electrode systems that will provide arrays with electrodes having different spacing and depths. There is also a relatively small, but growing, community of researchers, at this time, which must not only record from their electrode arrays but stimulate through them as well. A multi-electrode system that is biocompatible, electrically and mechanically stable, and employs design features allowing flexibility in the geometric layout and length of the individual electrodes within the array is needed in order to satisfy the multiple applications demanded by neuroscience researchers. An equally important component to the electrode fabrication and layout is the inclusion of remote electronics buried beneath the scalp capable of electro-magnetically transferring information across the scalp. This two- way communications between the outside world and the microelectrodes can be used for sensing electrical activity of nearby neural elements as control signals for a motor prosthesis or injecting currents into neural elements as part of a sensory prosthesis without the use of fragile wires and connector systems. Recent advances in laser machining of thin ceramic substrates, application of ultra-fine line gold conductors to ceramic, and the recent development of micro-circuit chips that can be bonded directly onto the ceramic substrate will provide the bases for the development of a Active Floating Multi-electrode Array. These arrays will be available as transcutaneous-wired ( AFMA), and wireless (WFMA) versions. PUBLIC HEALTH RELEVANCE: The development and commercialization of the "Active Floating Micro-electrode Array", AFMA, will provide the neuroscience community with a new tool for stable long-term recording and stimulation protocols using a minimal 4-wire cable and head connector, regardless of the number of electrode channels needing to be serviced. The AFMA design is the next logical step in the development of a wireless transmission system that will eliminate unreliable head connectors and cables. The AFMA will form the basis for development of a wireless system (WFMA) capable of sending and receiving information to the implanted microelectrodes by means of wireless transmission through the skin and by RF transmission to nearby recording and stimulation control consoles. This new technology will provide an excellent tool for pre-clinical and eventual clinical trials associated with the development of motor and sensory prosthesis for people with paralysis and visual disorders respectively.
描述(由申请人提供):在神经科学研究界,多电极阵列的植入越来越普遍。这些研究中的许多研究受到NIH和其他机构最近对感官和运动假体发展的影响的影响。运动假体植入物必须从附近的神经元素记录电活动,需要相对被动的电极/组织界面。但是,感觉假体必须采用电极系统,该电极系统可以将刺激电流注入神经系统,而不会损害附近的神经元素或金属电极。两种类型的植入物都需要一个漂浮在大脑上的电极系统,以最大程度地减少电极尖端的运动,这可能会损坏附近的细胞。来自几个神经科学研究小组的反馈表示需要渗透到皮质表面以下4至10 mm的皮层下空间中的市售多电极阵列。其他研究人员还提出需要电极系统,这些电极系统将为阵列提供具有不同间距和深度的电极。目前,还有一个相对较小但正在成长的研究人员社区,它不仅必须从其电极阵列中记录,而且还可以通过它们刺激它们。为了满足神经科学研究人员所需的多个应用,需要一个具有生物相容性,电和机械稳定的多电极系统,并采用设计功能,并采用设计功能,允许在阵列内的几何布局和单个电极的长度灵活。电极制造和布局同样重要的组成部分是埋在头皮下方的远程电子设备,能够将信息传递到头皮上。外界和微电极之间的这种双向通信可用于将附近神经元素的电活动传感,作为运动假体的控制信号,或者将电流注入神经元素,作为感觉假体的一部分,而无需使用脆弱的电线和连接器系统。薄陶瓷底物的激光加工,将超细系金导体应用于陶瓷的最新进展以及可以直接粘合到陶瓷底物上的微路芯片的最新开发将为积极的浮动浮动多电子阵列提供基础。 这些阵列将作为经牙(AFMA)和无线(WFMA)版本提供。公共卫生相关性:AFMA的“主动浮动微电极阵列”的开发和商业化将为神经科学社区提供一种新的工具,用于使用最小的4线电缆和头连接器,无论需要服务的电极频道数量如何,用于稳定的长期记录和刺激协议。 AFMA设计是开发无线传输系统的下一个逻辑步骤,该系统将消除不可靠的头部连接器和电缆。 AFMA将构成能够通过通过皮肤的无线传输以及通过RF传输到附近的记录和刺激控制控制台将信息发送和接收信息向植入的微电极发送和接收信息的基础。这项新技术将为分别为瘫痪和视觉疾病的人开发与运动和感觉假体的发展相关的临床前和最终临床试验提供出色的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Joseph Bak其他文献
Martin Joseph Bak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Joseph Bak', 18)}}的其他基金
相似国自然基金
基于太赫兹行波管放大器的高效率多路功率合成技术的研究
- 批准号:62371102
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向超精密电机系统的双降压对称半桥功率放大器噪声机理及抑制策略研究
- 批准号:52307042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微波敏感型铁死亡纳米放大器的构建及其增敏肝癌消融-免疫联合治疗的应用与机制研究
- 批准号:82302368
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
紧凑型大功率微波速调管放大器研究
- 批准号:62371108
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于SISL的三维集成封装宽带高效率功率放大器研究
- 批准号:62301387
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Highly-compliant Microneedle Arrays for Peripheral Nerve Mapping
用于周围神经映射的高度顺应性微针阵列
- 批准号:
9900908 - 财政年份:2017
- 资助金额:
$ 1.66万 - 项目类别:
Cochlear synaptopathy, neural pathophysiology and suprathreshold processing in animal models of sensorineural hearing loss
感音神经性听力损失动物模型中的耳蜗突触病、神经病理生理学和阈上处理
- 批准号:
10641749 - 财政年份:2017
- 资助金额:
$ 1.66万 - 项目类别:
Highly-compliant Microneedle Arrays for Peripheral Nerve Mapping
用于周围神经映射的高度顺应性微针阵列
- 批准号:
9415137 - 财政年份:2017
- 资助金额:
$ 1.66万 - 项目类别:
Integrated Interdisciplinary Training in Computational Neuroscience
计算神经科学综合跨学科培训
- 批准号:
7293610 - 财政年份:2006
- 资助金额:
$ 1.66万 - 项目类别: