High-throughput vibrational cytometry

高通量振动细胞术

基本信息

项目摘要

DESCRIPTION (provided by applicant): Flow cytometry is a technology that allows a single cell or particle to be measured for a variety of characteristics, determined by looking at their properties while they flow in a liquid stream. High speed of flow and huge number of objects to be analyzed imposes some strict criteria on which methods can be used for analysis. Most of the known commercial instruments are currently using light scattering for particle sizing and fluorescence detection for chemical recognition. However, vibrational spectroscopy is the only non-invasive optical spectroscopy tool, which has proven to provide chemically-specific information about the interrogated sample. It is hypothesized that vibrational spectroscopy, based on nonlinear Raman scattering can be used to serve as an analytical tool for cytometry by providing rapid and accurate chemical recognition of flowing materials. In the proposed exploratory (R21) research, the idea of ultra-rapid analysis of chemical species will be experimentally tested with an eye on potential accommodation of the developed instrumentation to a commercial flow cytometer. A new instrument will be constructed (Aim 1) to attain the desired parameters needed for rapid, i.e. of the order of 10,000 analyses per second, detection and examination of living cells. The developed instrumentation will be meticulously tested (Aim 2) for its (a) sensitivity, (b) reproducibility, (c) signal- noise-ratio, and (e) speed of spectra acquisition and analysis. Finally (Aim 3), the developed and optimized instrumentation will be tested using a living cell model system to understand the applicability and potential trade-offs of vibrational spectroscopy to flow cytometry of cellular systems. The long-term of this proposal is to develop a rapid, non-invasive methodology for cell and particle analysis, which can be applied for cell/particle analysis and sorting, detection of bacterial pathogens, and cell interactions with pharmaceuticals. The proposed instrument is envisioned to become an important tool in fundamental and clinical biomedical research and will impact many areas of biomedical sciences by providing a novel way to analyze cells and chemical structures at unprecedented speed levels. PUBLIC HEALTH RELEVANCE: Flow cytometry is a technique for counting, examining, and sorting microscopic particles in a stream of fluid. It allows simultaneous multiparametric analysis of the physical and/or chemical characteristics of single cells and particles. A truly non-invasive flow cytometer system, capable of providing chemically specific information, is proposed and will be developed and validated. The proposed technology has applications in a number of fields, such as pathology, immunology, toxicology, and pharmacology.
描述(由申请人提供):流式细胞术是一种允许测量单个细胞或颗粒的各种特征的技术,这些特征是通过观察它们在液流中流动时的特性来确定的。高速的流动和大量的待分析对象对分析方法施加了一些严格的标准。目前大多数已知的商业仪器都使用光散射进行颗粒测定,并使用荧光检测进行化学识别。然而,振动光谱是唯一的非侵入性光谱工具,已被证明可以提供有关所询问样品的化学特异性信息。据推测,基于非线性拉曼散射的振动光谱可以通过提供流动材料的快速和准确的化学识别来用作细胞计数的分析工具。在拟议的探索性(R21)研究中,将对化学物质超快速分析的想法进行实验测试,着眼于所开发的仪器与商业流式细胞仪的潜在适应性。将建造一台新仪器(目标 1)以获得快速(即每秒 10,000 次分析)活细胞检测和检查所需的参数。所开发的仪器将对其(a)灵敏度、(b)再现性、(c)信噪比以及(e)光谱采集和分析速度进行仔细测试(目标2)。最后(目标 3),将使用活细胞模型系统测试开发和优化的仪器,以了解振动光谱对细胞系统流式细胞术的适用性和潜在权衡。该提案的长期目标是开发一种快速、非侵入性的细胞和颗粒分析方法,可应用于细胞/颗粒分析和分选、细菌病原体检测以及细胞与药物的相互作用。该仪器预计将成为基础和临床生物医学研究的重要工具,并将通过提供一种以前所未有的速度分析细胞和化学结构的新方法来影响生物医学的许多领域。 公共卫生相关性:流式细胞术是一种对流体流中的微观颗粒进行计数、检查和分类的技术。它允许同时对单细胞和颗粒的物理和/或化学特性进行多参数分析。提出了一种真正的非侵入性流式细胞仪系统,能够提供化学特异性信息,并将对其进行开发和验证。所提出的技术在病理学、免疫学、毒理学和药理学等许多领域都有应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vladislav V. Yakovlev其他文献

How to drive CARS in reverse
如何倒车行驶汽车
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Hokr;Gary D. Noojin;Georgi I. Petrov;Hope T. Beier;Robert J. Thomas;Benjamin A. Rockwell;Vladislav V. Yakovlev
  • 通讯作者:
    Vladislav V. Yakovlev
Investigating chemotherapy effects on peripheral nerve elasticity
研究化疗对周围神经弹性的影响
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vsevolod Cheburkanov;Junwei Du;Mikhail Y. Berezin;Vladislav V. Yakovlev
  • 通讯作者:
    Vladislav V. Yakovlev
Towards high-accuracy noninvasive ocular melanoma imaging and prognostics
迈向高精度非侵入性眼部黑色素瘤成像和预后
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vsevolod Cheburkanov;Vladislav V. Yakovlev
  • 通讯作者:
    Vladislav V. Yakovlev
Controlling quasi-parametric amplifications: From multiple PT-symmetry phase transitions to non-Hermitian sensing
控制准参数放大:从多个 PT 对称相变到非厄米传感
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaoxiong Wu;Kai Bai;Penghong Yu;Zhaohui Dong;Yanyan He;Jingui Ma;Vladislav V. Yakovlev;Meng Xiao;Xianfeng Chen;Luqi Yuan
  • 通讯作者:
    Luqi Yuan

Vladislav V. Yakovlev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vladislav V. Yakovlev', 18)}}的其他基金

Sensing local nano-environment with coherent Raman microspectroscopy
使用相干拉曼显微光谱检测局部纳米环境
  • 批准号:
    10477258
  • 财政年份:
    2021
  • 资助金额:
    $ 18.46万
  • 项目类别:
Sensing local nano-environment with coherent Raman microspectroscopy
使用相干拉曼显微光谱检测局部纳米环境
  • 批准号:
    10218816
  • 财政年份:
    2021
  • 资助金额:
    $ 18.46万
  • 项目类别:
Brillouin Microscope for Biomedical Research
用于生物医学研究的布里渊显微镜
  • 批准号:
    10015304
  • 财政年份:
    2018
  • 资助金额:
    $ 18.46万
  • 项目类别:
Brillouin Microscope for Biomedical Research
用于生物医学研究的布里渊显微镜
  • 批准号:
    10239059
  • 财政年份:
    2018
  • 资助金额:
    $ 18.46万
  • 项目类别:
High-throughput vibrational cytometry
高通量振动细胞术
  • 批准号:
    8467914
  • 财政年份:
    2010
  • 资助金额:
    $ 18.46万
  • 项目类别:
Time-gated confocal Raman microscope
时间选通共焦拉曼显微镜
  • 批准号:
    7587294
  • 财政年份:
    2008
  • 资助金额:
    $ 18.46万
  • 项目类别:
Time-gated confocal Raman microscope
时间选通共焦拉曼显微镜
  • 批准号:
    7454090
  • 财政年份:
    2008
  • 资助金额:
    $ 18.46万
  • 项目类别:
REAL-TIME MICROSCOPIC IMAGING OF MEMBRANE POTENTIAL
膜电位的实时显微成像
  • 批准号:
    6364640
  • 财政年份:
    2001
  • 资助金额:
    $ 18.46万
  • 项目类别:
REAL-TIME MICROSCOPIC IMAGING OF FAST MEMBRANE POTENTIA
快速膜电位的实时显微成像
  • 批准号:
    6530140
  • 财政年份:
    2001
  • 资助金额:
    $ 18.46万
  • 项目类别:
SHORT PULSE LASER TISSUE ABLATION
短脉冲激光组织消融
  • 批准号:
    6030105
  • 财政年份:
    2000
  • 资助金额:
    $ 18.46万
  • 项目类别:

相似国自然基金

基于流固耦合模拟和机器学习的角膜区域性生物力学模型构建与验证
  • 批准号:
    82171101
  • 批准年份:
    2021
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于半参数零膨胀时空回归模型研究流感季节性区域传播风险
  • 批准号:
    81903406
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
耦合多源遥感数据和生态模型的区域森林生物量反演和预测
  • 批准号:
    41901351
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于林区多视角异源立体影像对的大区域生物量精准估测模型研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于立地条件和林分特征的区域尺度森林固碳速率和碳汇潜力
  • 批准号:
    31770676
  • 批准年份:
    2017
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目

相似海外基金

Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
  • 批准号:
    10751106
  • 财政年份:
    2024
  • 资助金额:
    $ 18.46万
  • 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 18.46万
  • 项目类别:
A place-based approach to geographic disparities in lung transplant
基于地点的肺移植地理差异方法
  • 批准号:
    10655779
  • 财政年份:
    2023
  • 资助金额:
    $ 18.46万
  • 项目类别:
Genomic Instability as A Driver of Stem Cell Exhaustion
基因组不稳定性是干细胞衰竭的驱动因素
  • 批准号:
    10722284
  • 财政年份:
    2023
  • 资助金额:
    $ 18.46万
  • 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
  • 批准号:
    10727940
  • 财政年份:
    2023
  • 资助金额:
    $ 18.46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了