Computational and Cell Culture Models for Mucus Clearance

粘液清除的计算和细胞培养模型

基本信息

  • 批准号:
    7936939
  • 负责人:
  • 金额:
    $ 47.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-21 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This application addresses broad Challenge Area (06) Enabling Technologies and specific Challenge Topic 06-ES-102*: 3-D or virtual models to reduce use of animals in research: Creation of miniature multi-cellular organs for high throughput screening for chemical toxicity testing. Development of novel micro-scale systems of multiple cell types that replicate the macro-scale structure and function of major organ systems in response to environmental stressors linked with development of computational models of organ system function can accelerate testing of the multitude of chemicals in our environment for toxicity. Research which furthers the generation of 3-D biological models will provide new assays for rapid screening of toxicity in organs such as the lung and liver. Cell types, such as human stem cells, used in these systems would reduce the use of animals and improve our assessment of chemical hazards in the environment. Contact: Dr. David Balshaw, balshaw@niehs.nih.gov, (919) 541-2448 Title: Computational and Cell Culture Models of Mucus Clearance. Summary: The lung inhales over 1 million infectious and toxic agents each day. The defense of the lung begins with the layer of mucus that lines the epithelial cell layer. When these assaults land at the mucus/air inter- face, the race between infection and clearance begins. The particulates, pathogens and allergens are in a diffusive race for the cell membrane before they can be cleared by the entraining flow of mucus. To provide effective clearance, the body must accomplish several goals. First it must provide the barrier layer of mucus with a height and viscoelasticity that impose a significant transit time for the infectious agents. Second, propulsion mechanisms through cilia or airflow must move the mucus with a speed that clears the agents before they can diffuse to the cell membrane. Third, the viscoelasticity of the mucus must be sufficient to prevent flooding of the airway, yet be fluid enough to allow for transport by cilia and airflow. The goal of this project is to generate computational and cell culture based models for mucus clearance. Since failure of clearance can be under- stood as the first step to a cascade of lung failure scenarios, the establishment of effective model systems for toxicity testing is critical. The use of a cell culture based model allows the inclusion of complex biochemical and immunological responses. The use of ciliated cultures that have been shown to generate and maintain appropriate mucus layers, and to generate a coordinated array of cilia for propulsion, is the starting point for our model system. We will generate the first ciliated cell culture systems that place the cells into a geometry that replicates essential features of the lung: directional, linear flow with converging cross section that can be challenged for vertical transport against gravity. This model system will have the potential to act as a sensitive as- say for environmental effectors that compromise mucus height regulation, mucus rheology, cilia density and co- ordination. We will further develop the assay within a microfluidic system that has twelve isolated assays operating in parallel. This will bring this sophisticated cell based assay to medium-throughput screening. Beyond biophysical models, we require a computational model so that we may predict the consequences of environmental assaults and design effective therapies. We will develop theoretical models that in- corporate the propulsion mechanisms of cilia and of airflow. The latter is operative during effective clearance maneuvers such as cough, and it is understood that even in the absence of cilia propulsion, cough can maintain sterile airways. However, there is currently no predictive model of the role of mucus rheology and layer thickness, cilia effectiveness and airflow in producing sufficient clearance to maintain healthy lung function. By combining a team of researchers from Applied Mathematics, Physics, Biochemistry and Biophysics, and the UNC Cystic Fibrosis Center, the goal of this project is to develop cell-based biophysical assays that can test environmental assaults for their role in compromising mucus clearance, and use them to establish a computational model for clearance that will have the potential for creating in-silico testing of toxins. The goal of this targeted two year project is to jump-start technical advances, in cell cultures and mathematical modeling, that will contribute to the vision of effective, efficient and physiologically accurate toxicity assays. The availability of a cell culture-based clearance assay coupled with an in- silico computational model will reduce the reliance on animal models and more accurately predict the consequences of toxins on human health.
描述(由申请人提供):此申请解决广泛的挑战领域(06)启用技术和特定挑战主题06-ES-102*:3-D或虚拟模型,以减少动物在研究中的使用:创建微型多细胞器官用于化学毒性测试的高吞吐量筛选。开发多种细胞类型的新型微尺度系统,这些细胞类型复制了主要器官系统的宏观结构和功能,以响应与器官系统功能的计算模型相关的环境压力源,可以加速对环境中多种化学物质的测试毒性。进一步生成3-D生物模型的研究将为肺和肝脏等器官的毒性快速筛查提供新的测定。这些系统中使用的细胞类型,例如人类干细胞,将减少动物的使用,并改善我们对环境中化学危害的评估。联系人:David Balshaw博士,balshaw@niehs.nih.gov,(919)541-2448标题:粘液清除的计算和细胞培养模型。摘要:每天超过100万感染力和有毒药物的肺吸附。肺的防御始于将上皮细胞层的粘液层。当这些攻击降落在粘液/空气间的面部时,感染与清除之间的种族开始。颗粒,病原体和过敏原为细胞膜的扩散竞赛,然后才能通过粘液的插入流量清除它们。为了提供有效的许可,身体必须实现多个目标。首先,它必须为粘液的屏障层提供高度和粘弹性,从而为感染剂施加了大量的过境时间。其次,通过纤毛或气流的推进机制必须以速度移动粘液,以清除药物可以扩散到细胞膜之前。第三,粘液的粘弹性必须足以防止气道洪水,但要足以通过纤毛和气流运输。该项目的目的是生成基于计算和细胞培养的模型以进行粘液清除。由于清除失败可以作为肺部失败情景的第一步,因此建立有效的毒性测试模型系统至关重要。基于细胞培养的模型的使用允许包含复杂的生化和免疫反应。我们模型系统的起点是使用纤毛的培养物,这些纤毛培养物已证明可以生成和维持适当的粘液层,并生成纤毛的协调阵列,这是我们模型系统的起点。我们将生成第一个将细胞置于复制肺部基本特征的细胞培养系统的纤毛细胞培养系统:方向性的,线性流动,带有收敛的横截面,这可能会挑战针对重力的垂直运输。该模型系统将有可能充当敏感的环境效应子,从而损害粘液高度调节,粘液流变学,纤毛密度和合并。我们将进一步开发一个微流体系统中的测定法,该系统具有十二个隔离测定法。这将使这种基于细胞的基于细胞的测定法进行中等通量筛选。除了生物物理模型之外,我们还需要一个计算模型,以便我们可以预测环境攻击和设计有效疗法的后果。我们将开发理论模型,以融入纤毛和气流的推进机制。后者在有效的清除操作中是手术的,例如咳嗽,也可以理解,即使在没有纤毛推进的情况下,咳嗽也可以维持无菌气道。但是,目前尚无粘液流变学和层厚度,纤毛效率和气流在产生足够间隙以维持健康肺功能的作用的预测模型。通过结合来自应用数学,物理,生物化学和生物物理学以及UN UN的囊性纤维化中心的研究人员团队,该项目的目的是开发基于细胞的生物物理测定法,可以测试其在损害粘液清除以及损害粘液清除和损害粘液中的作用的环境攻击使用它们来建立一个用于清除的计算模型,该模型将有可能创建毒素内的内部测试。该目标两年项目的目标是在细胞培养和数学建模中跳动启动技术进步,这将有助于有效,有效且生理上准确的毒性分析的愿景。基于细胞培养的清除率测定的可用性以及硅计算模型将减少对动物模型的依赖,并更准确地预测毒素对人类健康的后果。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Highly responsive core-shell microactuator arrays for use in viscous and viscoelastic fluids
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RICHARD SUPERFINE其他文献

RICHARD SUPERFINE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RICHARD SUPERFINE', 18)}}的其他基金

Microactuated Rheometer for Point of Care Coagulopathy Applications
适用于护理点凝血病应用的微驱动流变仪
  • 批准号:
    8301848
  • 财政年份:
    2012
  • 资助金额:
    $ 47.36万
  • 项目类别:
Microactuated Rheometer for Point of Care Coagulopathy Applications
适用于护理点凝血病应用的微驱动流变仪
  • 批准号:
    8446335
  • 财政年份:
    2012
  • 资助金额:
    $ 47.36万
  • 项目类别:
Array Microscope Assay for Cancer Cell Mechanics
癌细胞力学的阵列显微镜分析
  • 批准号:
    8154990
  • 财政年份:
    2011
  • 资助金额:
    $ 47.36万
  • 项目类别:
Array Microscope Assay for Cancer Cell Mechanics
癌细胞力学的阵列显微镜分析
  • 批准号:
    8534049
  • 财政年份:
    2011
  • 资助金额:
    $ 47.36万
  • 项目类别:
Array Microscope Assay for Cancer Cell Mechanics
癌细胞力学的阵列显微镜分析
  • 批准号:
    8333396
  • 财政年份:
    2011
  • 资助金额:
    $ 47.36万
  • 项目类别:
Computational and Cell Culture Models for Mucus Clearance
粘液清除的计算和细胞培养模型
  • 批准号:
    7838082
  • 财政年份:
    2009
  • 资助金额:
    $ 47.36万
  • 项目类别:
Virtual Lung Project: Integrated Modeling of Epithelial
虚拟肺项目:上皮细胞综合建模
  • 批准号:
    7125868
  • 财政年份:
    2006
  • 资助金额:
    $ 47.36万
  • 项目类别:
The Virtual Lung Project: Integrated Modeling of Epithelial Fluid Flows
虚拟肺项目:上皮液流的集成建模
  • 批准号:
    7259472
  • 财政年份:
    2006
  • 资助金额:
    $ 47.36万
  • 项目类别:
The Virtual Lung Project: Integrated Modeling of Epithelial Fluid Flows
虚拟肺项目:上皮液流的集成建模
  • 批准号:
    7646428
  • 财政年份:
    2006
  • 资助金额:
    $ 47.36万
  • 项目类别:
The Virtual Lung Project: Integrated Modeling of Epithelial Fluid Flows
虚拟肺项目:上皮液流的集成建模
  • 批准号:
    7670762
  • 财政年份:
    2006
  • 资助金额:
    $ 47.36万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
  • 批准号:
    10752276
  • 财政年份:
    2024
  • 资助金额:
    $ 47.36万
  • 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 47.36万
  • 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
  • 批准号:
    10595404
  • 财政年份:
    2023
  • 资助金额:
    $ 47.36万
  • 项目类别:
Research Project 2
研究项目2
  • 批准号:
    10403256
  • 财政年份:
    2023
  • 资助金额:
    $ 47.36万
  • 项目类别:
Spatio-temporal mechanistic modeling of whole-cell tumor metabolism
全细胞肿瘤代谢的时空机制模型
  • 批准号:
    10645919
  • 财政年份:
    2023
  • 资助金额:
    $ 47.36万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了