Programming Pharmacokinetics in Vivo via In Situ Switching of Nanoscale Particle
通过纳米级颗粒的原位切换对体内药代动力学进行编程
基本信息
- 批准号:8146821
- 负责人:
- 金额:$ 232.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-30 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:Adverse effectsAffectAntineoplastic AgentsBehaviorBiochemicalBiologicalBiological AvailabilityBlood CirculationBlood Circulation TimeCancer ModelCancer cell lineCellsChemistryComplexConstitutionCoupledDataDependenceDetectionDevelopmentDiagnosisDiagnosticDisease VectorsDose-LimitingDrug Delivery SystemsDrug KineticsGoalsHalf-LifeHistocompatibility TestingHumanImageImmune responseIn SituIn VitroInvestigationLabelLiverMagnetic Resonance ImagingMasksMethodsModelingMorphologyMusNoisePatientsPharmaceutical ChemistryPharmaceutical PreparationsPharmacologic SubstancePropertyRelative (related person)Renal clearance functionResearchScienceShapesSignal TransductionStimulusStructureSurfaceTherapeuticTissuesVirusabstractinganalogbioimagingcancer therapychemotherapydesignhuman diseasein vivointerestmacrophagenanoparticlenanoscaleneoplastic cellnovelnovel strategiesparticleprogramspublic health relevanceresearch studyresponseretinal rodssmall moleculetargeted deliverytumoruptakevectorvirus morphology
项目摘要
DESCRIPTION (Provided by the applicant)
Abstract: Controlling the pharmacokinetics and targeting of small molecule drugs and diagnostics is at the core of medicinal chemistry, pharmaceutical science and biomedical imaging. The intense interest in nanoscale vehicles designed for targeted delivery and detection in vivo is predicated on the idea that such materials may infer their pharmacokinetic, bioavailability and targeting properties on small molecules and other cargo including biomolecules. Such nanoscale packaging strategies have a key role in alleviating dose-limiting side effects associated with many otherwise clinically effective chemotherapeutic drugs presenting a major hurdle in the treatment of cancer. In addition, targeting diagnostics efficiently and selectively to given tissues while avoiding non-specific accumulation greatly enhances signal to noise in in vivo imaging applications. The naturally efficient targeting and infectious properties of biological disease vectors, in particular viruses, has made them models in efforts to design and develop synthetic and semisynthetic nanoscale vectors for targeted drug delivery. Therefore, research has focused on the development of appropriately decorated spherical particles of various sizes, degradability profiles, surface chemistry and material constitution. More recently, the extraordinary diversity of virus morphologies and an increasing ability to synthesize complex nanoscale structures, has inspired investigations into how shape can affect synthetic nanoscale particle interactions with cells and their behavior in vivo. In particular filamentous (or rod shaped) morphologies have been shown to have significantly different properties relative to their spherical analogues including longer blood circulation times and extended cell-uptake rates. The intriguing shape and size dependence of these key properties of delivery vectors inspires our proposal to develop nanoscale particles with switchable, transformable morphologies. We propose a novel class of materials capable of switchable, programmed pharmacokinetic profiles in vivo with utility in a range of functions including differential uptake into particular tissue types (e.g. tumor targeting vs liver uptake), stimulated renal clearance from systemic circulation, and evasion of macrophage uptake coupled with selective targeting. The goal of this research program is to develop materials capable of switching their pharmacokinetic and tissue targeting profiles in response to specific biochemical stimuli. This will be achieved utilizing a novel mechanism - stimuli-responsive nanoparticle morphology transitions. We propose a number of experiments for exploring the viability and validating this approach to vector directed targeting. Our preliminary pharmacokinetic data will be further validated in healthy mice and in vitro with macrophages, to examine our ability to control and switch several factors including: tissue accumulation, mode of clearance, circulation half-life, immune- response and degradation. Investigations will include targeted drug delivery, and targeting of diagnostics in the form of fluorescent labels and MRI-agents to human cancer cell lines in vitro and mouse cancer models in vivo.
Public Health Relevance: The ability to accurately detect, diagnose and target diseased tissue is a key challenge in treating patients. This research program aims to discover new methods for specifically masking and targeting toxic anticancer drugs specifically to tumor cells and for labeling them for diagnosis. This is a novel approach to pharmaceutical and biomedical imaging science with broad, general implications for programmed, "smart" therapeutics for tackling as yet unsolved problems in the treatment of human disease including allevation of chemotherapy side-effects and early, accurate diagnoses.
描述(由申请人提供)
摘要:控制小分子药物和诊断的药代动力学和靶向是药物化学、药物科学和生物医学成像的核心。人们对设计用于体内靶向递送和检测的纳米级载体的浓厚兴趣是基于这样的想法:此类材料可以推断其药代动力学、生物利用度以及对小分子和包括生物分子在内的其他货物的靶向特性。这种纳米级包装策略在减轻与许多其他临床上有效的化疗药物相关的剂量限制副作用方面发挥着关键作用,这些副作用是癌症治疗的主要障碍。此外,有效、选择性地针对给定组织进行诊断,同时避免非特异性积累,大大增强了体内成像应用中的信噪比。 生物疾病载体(特别是病毒)的自然有效靶向和感染特性,使其成为设计和开发用于靶向药物递送的合成和半合成纳米级载体的模型。因此,研究重点是开发各种尺寸、可降解性、表面化学和材料构成的适当装饰的球形颗粒。最近,病毒形态的非凡多样性和合成复杂纳米级结构的能力不断增强,激发了人们对形状如何影响合成纳米级颗粒与细胞的相互作用及其体内行为的研究。特别是,丝状(或棒状)形态已被证明与其球形类似物相比具有显着不同的特性,包括更长的血液循环时间和更长的细胞摄取率。递送载体的这些关键特性的有趣的形状和尺寸依赖性激发了我们开发具有可切换、可变换形态的纳米级粒子的提议。我们提出了一类新型材料,能够在体内实现可切换、程序化的药代动力学特征,具有一系列功能,包括特定组织类型的差异吸收(例如肿瘤靶向与肝脏吸收)、刺激肾脏从体循环中清除以及逃避巨噬细胞摄取与选择性靶向相结合。 该研究计划的目标是开发能够响应特定生化刺激而改变其药代动力学和组织靶向特性的材料。这将利用一种新的机制——刺激响应纳米颗粒形态转变来实现。我们提出了许多实验来探索可行性并验证这种矢量定向靶向方法。我们的初步药代动力学数据将在健康小鼠和体外巨噬细胞中进一步验证,以检查我们控制和转换多个因素的能力,包括:组织积累、清除模式、循环半衰期、免疫反应和降解。研究将包括靶向药物输送,以及以荧光标记和 MRI 试剂的形式对体外人类癌细胞系和体内小鼠癌症模型进行靶向诊断。
公共卫生相关性:准确检测、诊断和靶向患病组织的能力是治疗患者的关键挑战。该研究计划旨在发现专门针对肿瘤细胞特异性掩蔽和靶向有毒抗癌药物以及标记它们以进行诊断的新方法。这是一种制药和生物医学成像科学的新方法,对于程序化的“智能”疗法具有广泛的普遍意义,可解决人类疾病治疗中尚未解决的问题,包括减轻化疗副作用和早期准确诊断。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathan Claude Gianneschi其他文献
Nathan Claude Gianneschi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathan Claude Gianneschi', 18)}}的其他基金
Polymeric Materials Synthesis and Characterization
高分子材料的合成与表征
- 批准号:
10682623 - 财政年份:2021
- 资助金额:
$ 232.38万 - 项目类别:
Polymeric Materials Synthesis and Characterization
高分子材料的合成与表征
- 批准号:
10282409 - 财政年份:2021
- 资助金额:
$ 232.38万 - 项目类别:
Polymeric Materials Synthesis and Characterization
高分子材料的合成与表征
- 批准号:
10490414 - 财政年份:2021
- 资助金额:
$ 232.38万 - 项目类别:
Polymeric Materials Synthesis and Characterization
高分子材料的合成与表征
- 批准号:
10682623 - 财政年份:2021
- 资助金额:
$ 232.38万 - 项目类别:
相似国自然基金
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高尿酸调控TXNIP驱动糖代谢重编程影响巨噬细胞功能
- 批准号:82370895
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
倒装芯片超声键合微界面结构演变机理与影响规律
- 批准号:52305599
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
寒地城市学区建成环境对学龄儿童心理健康的影响机制与规划干预路径研究
- 批准号:52378051
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
原位研究聚变燃料纯化用Pd-Ag合金中Ag对辐照缺陷演化行为的影响及其相互作用机制
- 批准号:12305308
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Single-Cell RNA Sequencing of Cardiac Organoids to Determine the Genetic Basis for Cell-Specific Responses to Anticancer Drugs
心脏类器官的单细胞 RNA 测序以确定抗癌药物细胞特异性反应的遗传基础
- 批准号:
10679493 - 财政年份:2023
- 资助金额:
$ 232.38万 - 项目类别:
HER1-3 and Death Receptor protein folding as therapeutic vulnerabilities
HER1-3 和死亡受体蛋白折叠作为治疗漏洞
- 批准号:
10721930 - 财政年份:2023
- 资助金额:
$ 232.38万 - 项目类别:
Defining kinase interaction pathways to enhance anti-cancer efficacy and minimize associated morbidities of kinase inhibitor drugs.
定义激酶相互作用途径,以增强抗癌功效并最大限度地减少激酶抑制剂药物的相关发病率。
- 批准号:
10644554 - 财政年份:2023
- 资助金额:
$ 232.38万 - 项目类别:
Dermal-Epidermal Junction Disruptors: Toxicodynamic Mechanisms
真皮-表皮连接干扰物:毒效机制
- 批准号:
10629516 - 财政年份:2023
- 资助金额:
$ 232.38万 - 项目类别: