Innovative Analytic Methods of Person-Centered Data and Adaptive Designs for Alco

以人为中心的数据创新分析方法和 Alco 的自适应设计

基本信息

  • 批准号:
    7938970
  • 负责人:
  • 金额:
    $ 33.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-30 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This application addresses broad Challenge Area (05): Comparative Effectiveness Research and specific Challenge Topic: 05-AA-102 Adaptive Designs and Person-Centered Data Analysis for Alcohol Treatment Research. As the challenge topic implies, statistical analyses using variable-centered approaches (e.g., comparison of means) are insufficient in many clinical studies of alcohol dependence. For example, statistical assumptions (e.g., normality) are routinely violated. Also, such methods can not adequately account for variability in drinking outcome. Similarly, simple trials comparing a treatment and a placebo often do not answer questions of particular import to clinicians, who have to make a series of decisions in the same patient based upon response to initial and subsequent treatment. Recently, there has been substantially increased interest in - and research on - the use of various pharmacological agents as promising adjuncts to psychosocial treatment to reduce alcohol consumption. Many of these studies collected person-centered drinking data using retrospective method, e.g., the timeline follow-back method to recall and record the daily drinking outcome for the past week. These daily drinking records were then summarized and analyzed. For example, Johnson et al. (2003) condensed the daily drinking records in the treatment assessment periods, while Johnson et al. (2007) condensed them in the weekly format. However, such condensed outcomes are not as informative as the original daily drinking record. Also, normality is often assumed for these outcomes, which could be violated. Third, the trajectory of the drinking outcome can not be fully captured in these analyses. In this grant proposal we will develop new statistical methods to analyze person-centered data for alcohol treatment research. First, we will use the original daily drinking level as the response variable, thus our method is more efficient than those using the condensed outcomes. Second, we tackle the non-normality of the daily drinking outcome by two- part models (2PM) to separately describe the odds of daily drinking being zero and the actual number of drinks in a drinking day. We also propose new methods to tackle the skewness and possible heteroscedasticity in the positive daily drinking level. Third, we are interested in the trajectory of the drinking outcome over time to better capture differences in outcomes. We will use both parametric and semiparametric methods (e.g., splines) to describe such temporal patterns. In many simple trials, we compare two arms, often a treatment arm and a control arm, to determine the efficacy of the intervention. However, such studies are insufficient when we are interested in determining the optimal dose from a range of doses. For example, Johnson et al. (2003, 2007) used a dose escalation scheme (from 25 mg to 300 mg) in the topiramate trials. In these proof of concept trials, they established the overall topiramate treatment effect at improving drinking outcomes. However, the topiramate effect at different dose levels remains to be ascertained so that we can identify the best dose which has the satisfactory efficacy while minimizing the rate of adverse events. Adaptive designs can offer a potential solution. The motivation behind adaptive designs is to bring together the statistical advantages of a sequential design with the ethical imperative of treating as many patients as possible at a dose judged to be the best, in the light of prior knowledge and the current accumulated data. In this context, the continual reassessment method (CRM) opened up the field to the use of working statistical models which have some optimal characteristics (O'Quigley, Pepe and Fisher, 1990). New methods to find the most successful dose (MSD) will be proposed to identify the optimal dose in a cost-effective way. PUBLIC HEALTH RELEVANCE (provided by applicant): In this grant proposal we will propose and apply several innovative models to analyze the person-centered data for alcohol treatment research. We will also introduce new adaptive designs to identify optimal dose in a cost-effective way. We expect that the completion of this study will speed the process of comparing effectiveness of different treatments in alcohol dependence studies.
描述(由申请人提供):本申请涉及广泛的挑战领域 (05):比较有效性研究和具体挑战主题:05-AA-102 酒精治疗研究的自适应设计和以人为中心的数据分析。正如挑战主题所暗示的那样,在许多酒精依赖的临床研究中,使用以变量为中心的方法(例如,平均值比较)的统计分析是不够的。例如,统计假设(例如正态性)经常被违反。此外,此类方法不能充分解释饮酒结果的变异性。同样,比较治疗和安慰剂的简单试验通常不能回答对临床医生特别重要的问题,临床医生必须根据对初始和后续治疗的反应对同一患者做出一系列决定。最近,人们对使用各种药物作为社会心理治疗的有希望的辅助手段来减少饮酒的兴趣和研究大大增加。其中许多研究采用回顾性方法收集以人为中心的饮酒数据,例如时间线回溯法来回忆和记录过去一周的每日饮酒结果。然后对这些日常饮酒记录进行总结和分析。例如,约翰逊等人。 (2003) 浓缩了治疗评估期间的每日饮酒记录,而 Johnson 等人。 (2007)将它们浓缩为每周的形式。然而,这种浓缩结果的信息量不如原始的每日饮酒记录。此外,通常假设这些结果呈正态性,但这可能会被违反。第三,这些分析无法完全捕捉饮酒结果的轨迹。在这项拨款提案中,我们将开发新的统计方法来分析酒精治疗研究中以人为本的数据。首先,我们将使用原始的每日饮酒水平作为响应变量,因此我们的方法比使用压缩结果的方法更有效。其次,我们通过两部分模型(2PM)来解决日常饮酒结果的非正态性,分别描述每日饮酒为零的几率和饮酒日的实际饮酒次数。我们还提出了新方法来解决积极的每日饮酒水平中的偏度和可能的异方差性。第三,我们对饮酒结果随时间变化的轨迹感兴趣,以更好地捕捉结果的差异。我们将使用参数和半参数方法(例如样条曲线)来描述这种时间模式。在许多简单的试验中,我们比较两个臂,通常是治疗臂和对照组,以确定干预措施的功效。然而,当我们有兴趣从一系列剂量中确定最佳剂量时,此类研究是不够的。例如,约翰逊等人。 (2003, 2007) 在托吡酯试验中使用了剂量递增方案(从 25 毫克到 300 毫克)。在这些概念验证试验中,他们确定了托吡酯治疗在改善饮酒结果方面的总体效果。然而,不同剂量水平的托吡酯效果仍有待确定,以便我们能够确定具有令人满意的疗效同时最大限度地减少不良事件发生率的最佳剂量。自适应设计可以提供潜在的解决方案。适应性设计背后的动机是将序贯设计的统计优势与根据现有知识和当前积累的数据以被认为是最佳剂量治疗尽可能多的患者的道德要求结合起来。在这种背景下,持续重新评估方法(CRM)开辟了使用具有某些最佳特征的工作统计模型的领域(O'Quigley、Pepe 和 Fisher,1990)。将提出寻找最成功剂量(MSD)的新方法,以经济有效的方式确定最佳剂量。 公共卫生相关性(由申请人提供):在本拨款提案中,我们将提出并应用几种创新模型来分析以人为本的酒精治疗研究数据。我们还将引入新的自适应设计,以经济高效的方式确定最佳剂量。我们预计这项研究的完成将加快酒精依赖研究中不同治疗方法有效性的比较过程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bankole A Johnson其他文献

Bankole A Johnson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bankole A Johnson', 18)}}的其他基金

LAB TRIALS TO DEVELOP MEDICATIONS FOR COCAINE DEPENDENCE--STUDY 1
开发治疗可卡因依赖药物的实验室试验——研究 1
  • 批准号:
    8167161
  • 财政年份:
    2010
  • 资助金额:
    $ 33.44万
  • 项目类别:
Innovative Analytic Methods of Person-Centered Data and Adaptive Designs for Alco
以人为中心的数据创新分析方法和 Alco 的自适应设计
  • 批准号:
    7828734
  • 财政年份:
    2009
  • 资助金额:
    $ 33.44万
  • 项目类别:
CLINICAL TRIAL: NEW MEDICATIONS TO TREAT ALCOHOL DEPENDENCE
临床试验:治疗酒精依赖的新药
  • 批准号:
    7951471
  • 财政年份:
    2009
  • 资助金额:
    $ 33.44万
  • 项目类别:
LAB TRIALS TO DEVELOP MEDICATIONS FOR COCAINE DEPENDENCE--STUDY 1
开发治疗可卡因依赖药物的实验室试验——研究 1
  • 批准号:
    7951479
  • 财政年份:
    2009
  • 资助金额:
    $ 33.44万
  • 项目类别:
CLINICAL TRIAL: NEW MEDICATIONS TO TREAT ALCOHOL DEPENDENCE
临床试验:治疗酒精依赖的新药
  • 批准号:
    7718556
  • 财政年份:
    2008
  • 资助金额:
    $ 33.44万
  • 项目类别:
LAB TRIALS TO DEVELOP MEDICATIONS FOR COCAINE DEPENDENCE--STUDY 1
开发治疗可卡因依赖药物的实验室试验——研究 1
  • 批准号:
    7718568
  • 财政年份:
    2008
  • 资助金额:
    $ 33.44万
  • 项目类别:
NEW MEDICATIONS TO TREAT ALCOHOL DEPENDENCE
治疗酒精依赖的新药物
  • 批准号:
    7606703
  • 财政年份:
    2007
  • 资助金额:
    $ 33.44万
  • 项目类别:
Medication Development for Cocaine Dependence
可卡因依赖的药物开发
  • 批准号:
    6827173
  • 财政年份:
    2005
  • 资助金额:
    $ 33.44万
  • 项目类别:
Medication Development for Cocaine Dependence
可卡因依赖的药物开发
  • 批准号:
    7386776
  • 财政年份:
    2005
  • 资助金额:
    $ 33.44万
  • 项目类别:
Novel Pharmacotherapy for Dual Dependence
双重依赖的新型药物疗法
  • 批准号:
    7452539
  • 财政年份:
    2005
  • 资助金额:
    $ 33.44万
  • 项目类别:

相似国自然基金

兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
  • 批准号:
    72302197
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
  • 批准号:
    72332003
  • 批准年份:
    2023
  • 资助金额:
    166 万元
  • 项目类别:
    重点项目
签字注册会计师动态配置问题研究:基于临阵换师视角
  • 批准号:
    72362023
  • 批准年份:
    2023
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
异常获利、捐赠与会计信息操纵:基于新冠疫情的准自然实验研究
  • 批准号:
    72372061
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目

相似海外基金

Providing Tobacco Treatment to Patients Undergoing Lung Cancer Screening at MedStar Health: A Randomized Trial
为 MedStar Health 接受肺癌筛查的患者提供烟草治疗:一项随机试验
  • 批准号:
    10654115
  • 财政年份:
    2023
  • 资助金额:
    $ 33.44万
  • 项目类别:
Antibody-based therapy for fentanyl-related opioid use disorder
基于抗体的芬太尼相关阿片类药物使用障碍治疗
  • 批准号:
    10831206
  • 财政年份:
    2023
  • 资助金额:
    $ 33.44万
  • 项目类别:
Comparative Risk of Oral Complications Associated with Medications for Opioid Use Disorder: A Mixed-Methods Approach
与阿片类药物使用障碍药物相关的口腔并发症的风险比较:混合方法
  • 批准号:
    10765049
  • 财政年份:
    2023
  • 资助金额:
    $ 33.44万
  • 项目类别:
Determining the Influence of Clinicodemographic, Biologic and SDOH Factors in Racial and Ethnic Disparities in the Prognosis of Alcohol-Associated Liver Disease
确定临床人口统计学、生物和 SDOH 因素对酒精相关性肝病预后中种族和民族差异的影响
  • 批准号:
    10785492
  • 财政年份:
    2023
  • 资助金额:
    $ 33.44万
  • 项目类别:
Improving outcomes for substance-affected families in the child welfare system
改善儿童福利系统中受药物影响的家庭的成果
  • 批准号:
    10734742
  • 财政年份:
    2023
  • 资助金额:
    $ 33.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了