Role Of Neuropeptides And Biogenic Amines In Stress and Brain Inflammation
神经肽和生物胺在压力和脑炎症中的作用
基本信息
- 批准号:7735135
- 负责人:
- 金额:$ 230.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AGTR2 geneAcuteAdrenal Cortex HormonesAdrenal GlandsAgonistAldosteroneAngiotensin IIAngiotensin II ReceptorAngiotensin ReceptorAnimal ModelAnimalsAnti-Inflammatory AgentsAnti-inflammatoryAnxietyAreaBindingBiogenic AminesBiological PsychiatryBiotinBirthBrainBrain DiseasesCD14 AntigenCD14 geneCGP-42112CerebrumCharacteristicsChronicClassClinical ProtocolsCollaborationsComplexConditionCorticosteroneCorticotropinCorticotropin-Releasing HormoneCouplingCultured CellsDevelopmentDevelopment, OtherDinoprostoneDiseaseDissectionEncephalitisEndothelial CellsEndotheliumEndotoxinsEquilibriumFOS geneFrightGene DeletionGene ExpressionGene SilencingGenesGenetic ModelsGenetic TranscriptionGoalsHigh Blood PressureHippocampus (Brain)HormonesHumanHuman VolunteersHypertensionHypothalamic structureImmuneImmune responseImmunohistochemistryIn VitroInflammationInflammatoryInflammatory ResponseLabelLeadLimbic SystemLipopolysaccharidesLocalizedMediatingMental DepressionMicrogliaMineralocorticoidsMusNADPNF-kappa BNational Institute of Mental HealthNerve DegenerationNeurodegenerative DisordersNeuronsNeuropeptidesNitric OxideNitric Oxide SynthaseNumbersOxidasesPathogenesisPathway interactionsPeripheralPharmaceutical PreparationsPhenotypePituitary GlandPlayPost-Traumatic Stress DisordersPrevention approachProductionPropertyProteinsProteomicsPurposeRattusReactionReactive Oxygen SpeciesReceptor GeneRegulationReportingResearchRodentRodent ModelRoleSignal TransductionSiteSpleenStimulusStreptavidinStressSystemTechniquesTherapeuticTimeTranscriptional ActivationTransfectionTreatment EfficacyTyrosine 3-MonooxygenaseUp-RegulationWorkadiponectinbasecandesartancell typecerebrovascularcyclooxygenase 2cytokinefamilial hypertensionhypothalamic-pituitary-adrenal axisin vivolaser capture microdissectionlocus ceruleus structuremacrophagemolecular recognitionmonocytemouse modelmultitaskneuropsychiatrynovelnovel strategiesnovel therapeuticsparaventricular nucleuspreventprotein protein interactionreceptorresearch studyresponseresponse to injurytranscription factor
项目摘要
Brain inflammation. In previous work, we had found that sustained in vivo AT1 receptor blockade with the ARB candesartan reversed, in a rat model of genetic hypertension, the cerebrovascular inflammation which is characteristic of hypertension in both rodents and humans. We asked the question whether ARBs could reduce other types of brain inflammation. During FY 2008, we focused on the effect of ARBs on the rat innate immune response, produced by systemic administration of the bacterial endotoxin lipopolysaccharide (LPS). We found that ARBs limited the peripheral and brain inflammatory responses to systemic immune challenge in the rat. In vivo, ARBs reduced the LPS-induced inflammatory reaction in rodent spleen, adrenal gland, pituitary gland, and in multiple brain areas including the hypothalamus, olfactory system, hippocampus and cortex. Anti-inflammatory effects of ARBs were more pronounced in areas expressing large numbers of neuronal AT1 receptors. In addition, ARBs reduced the LPS-induced increase of the pro-inflammatory mineralocorticoid hormone aldosterone and enhanced the production of the anti-inflammatory hormone adiponectin. Moreover, ARBs rapidly reduced, in vitro, the LPS-induced pro-inflammatory gene expression and secretion of pro-inflammatory cytokines in cultured human monocytes. We next focused on the elucidation of the mechanisms of the anti-inflammatory effects of ARBs, and we asked the question which of the major mechanisms of inflammation stimulated by LPS were reduced or eliminated by ARB administration. We found that ARBs reduced, in vivo, the LPS-induced production of multiple pro-inflammatory factors, including reactive oxygen species, nitric oxide and prostaglandin E2. This implicates mechanisms involving Nicotinamide Adenine Dinucleotide Phosphate (NADPH) oxidase, cyclooxygenase-2 (COX-2), nitric oxide synthase (NOS) and transcription factors such as NF-kappaB. We found similar ARB effects, in vitro, in cultured human circulating monocytes. A repeated finding after ARB administration was the decrease in the constitutive and in the LPS-induced expression of the LPS receptor CD14. We hypothesize that interference with the LPS molecular recognition complex may explain part of the anti-inflammatory effects of ARBs.
We are now focusing on the further clarification of the mechanisms of action of ARBs. We use a mouse model of AT1 receptor gene-deletion, to determine the effect of LPS when AT1 receptors are not expressed from birth. Cerebral endothelium plays a crucial role in the propagation of inflammatory signals throughout the brain and is critical for activation of specific groups of neurons involved in central response to systemic inflammation. We use cultures of cerebral endothelial cells and isolated microglia to study the relationship between LPS and AT1 receptors, to determine cellular colocalization and direct protein-protein interactions. Studies include gene transfections and gene silencing techniques in phenotype rescue studies and to identify critical components mediating the effect of ARBs in particular cell types. These experiments will further clarify the mechanisms of the anti-inflammatory effects of ARBs. In previous work, we have reported that CGP42112, an agonist of a second type of Ang II receptors, the AT2 receptors, actively inhibits the LPS-induced inflammation in human monocytes. During FY 2008 we discovered that, in rodents, CGP42112 effectively decreases LPS-induced inflammation in vivo. The anti-inflammatory effects of CGP42112 could be the result of AT2 receptor stimulation and/or binding to a novel macrophage receptor that we have previously discovered and reported, localized to brain and circulating macrophages. This novel non-Angiotensin receptor has not yet been characterized. In collaboration with Drs. Markey, NIMH, we are attempting to identify proteins which bind to CGP42112 using biotin-labeled CGP42112 and isolation by streptavidin coupling, and by laser capture microdissection, immunohistochemistry and proteomics. In other studies we will characterize the mechanisms of CGP42112 novel anti-inflammatory effects using AT2 gene-deleted mice and human circulating monocytes.
Stress. We previously demonstrated that orally administered ARBs limited the HPA axis, sympathetic and cortical responses to isolation stress, and that these compounds reduced anxiety in rodents. On this basis, we previously proposed the first clinical protocol to evaluate the effects of AT1 receptor antagonists in the fear-startle response in human volunteers, with the goal to determine if AT1 receptor antagonists are effective in reducing anxiety and stress in humans. During FY 2008, we further explored the anti-stress effects of ARBs in response to immune challenge. We now find that ARBs limit the HPA axis response to the endotoxin lipopolysaccharide (LPS) in the adrenal gland, pituitary and hypothalamus. ARBs decreased the LPS-induced upregulation of the early transcription factor c-fos and microglial activation in the paraventricular nucleus. While eliminating the LPS-induced up-regulation of the hormone aldosterone, ARBs do not decrease LPS-induced ACTH and corticosterone responses, demonstrating that ARBs do not limit the anti-inflammatory effects of LPS-induced corticosteroid release. We found that the effect of ARBs on the HPA axis depend on the type of stress. During isolation stress, ARBs prevent HPA axis activation, but they do not prevent the HPA axis response to inflammation. We have also found that ARBs prevent the stress-induced increase in brain sympathetic activity by suppressing the stress-induced tyrosine hydroxylase gene transcription in the rat locus coeruleus. Our experiments are now focused on the elucidation of the mechanisms of the ARB control of tyrosine hydroxylase transcription in the locus coeruleus, the regulation of corticotrophin-releasing factor in the paraventricular nucleus, and the determination of additional brain sites involved on the anti-stress effects of ARBs. To this end we combine selective dissection techniques, gene microarray and proteomic studies.
In conclusion, we demonstrated during the FY 2008 that ARBs may be considered as a novel class of multitasking anti-stress, anti-anxiety, anti-inflammatory medications in the treatment of brain disorders. They are already widely used to treat high blood pressure in humans and are safe and devoid of addictive properties, Elucidation of their mechanisms of action may lead to the development of other compounds of great therapeutic potential.
大脑炎症。在先前的工作中,我们发现,在遗传性高血压的大鼠模型中,ARB Candesartan逆转了体内AT1受体阻滞,脑血管炎症是啮齿动物和人类高血压的特征。我们问了一个问题ARB是否可以减少其他类型的脑部炎症。 在2008财年期间,我们专注于ARB对大鼠先天免疫反应的影响,该反应是通过系统性给药细菌内毒素脂多糖(LPS)产生的。 我们发现ARB限制了大鼠全身免疫挑战的周围和脑部炎症反应。在体内,ARB降低了LPS诱导的啮齿动物脾脏,肾上腺,垂体腺体以及多个大脑区域的炎症反应,包括下丘脑,嗅觉系统,海马和皮层。在表达大量神经元AT1受体的区域中,ARB的抗炎作用更为明显。此外,ARB减少了LPS诱导的促炎性矿物皮质激素醛固酮的增加,并增强了抗炎激素脂联素的产生。 此外,ARB在体外迅速降低,LPS诱导的促炎基因表达和培养的人单核细胞中促炎细胞因子的分泌。 接下来,我们着重于阐明ARB的抗炎作用机制,我们询问了ARB给药降低或消除了LPS刺激的哪种主要机制。我们发现,在体内,ARB降低了LPS诱导的多种促炎因子的产生,包括活性氧,一氧化氮和前列腺素E2。这意味着涉及烟酰胺腺苷二核苷酸(NADPH)氧化酶,环氧合酶-2(COX-2),一氧化氮合酶(NOS)和转录因子(例如NF-kappab)的机制。我们在培养的人循环单核细胞中发现了类似的ARB效应。 ARB给药后的重复发现是LPS受体CD14的本构和LPS诱导的表达的减少。 我们假设对LPS分子识别复合物的干扰可能解释了ARB的抗炎作用的一部分。
现在,我们着重于进一步阐明ARB的作用机理。我们使用AT1受体基因脱落的小鼠模型来确定当未出生时表达AT1受体时LP的作用。脑内皮在整个大脑的炎症信号传播中起着至关重要的作用,对于激活参与系统性炎症中心反应的特定神经元的激活至关重要。我们使用脑内皮细胞和分离的小胶质细胞的培养物来研究LPS和AT1受体之间的关系,以确定细胞共定位和直接蛋白质 - 蛋白质相互作用。研究包括表型救援研究中的基因转染和基因沉默技术,并确定介导ARB在特定细胞类型中的影响的关键成分。这些实验将进一步阐明ARB的抗炎作用的机制。在先前的工作中,我们报道说,第二种ANG II受体的激动剂CGP42112积极抑制人类单核细胞中LPS诱导的炎症。 在2008财年期间,我们发现,在啮齿动物中,CGP42112有效地减少了LPS诱导的体内炎症。 CGP42112的抗炎作用可能是AT2受体刺激和/或与我们先前发现和报道的新型巨噬细胞受体结合的结果,并将其定位于大脑和循环巨噬细胞。 这种新型的非血管紧张素受体尚未表征。与Drs合作。 Markey,NIMH,我们正在尝试使用生物素标记的CGP42112鉴定与CGP42112结合的蛋白质,并通过链霉亲和素偶联来鉴定与CGP42112结合的蛋白质,并通过激光捕获微解析,免疫组织化学和蛋白质组学。在其他研究中,我们将使用AT2基因删除的小鼠和人循环的单核细胞来表征CGP42112新型抗炎作用的机制。
压力。 我们先前证明,口服ARB限制了HPA轴,对隔离应激的交感神经和皮质反应,并且这些化合物减少了啮齿动物的焦虑。在此基础上,我们先前提出了第一个评估AT1受体拮抗剂在人类志愿者中恐惧启动反应中的影响的临床方案,目的是确定AT1受体拮抗剂是否有效减少人类的焦虑和压力。在2008财年期间,我们进一步探讨了ARB对免疫挑战的抗压力。现在,我们发现ARB限制了HPA轴对肾上腺,垂体和下丘脑中内毒素脂多糖(LPS)的反应。 ARB降低了LPS诱导的早期转录因子C-FOS和小胶质细胞活化的上调。在消除LPS诱导的激素醛固酮上调的同时,ARB不会降低LPS诱导的ACTH和皮质酮的反应,这表明ARB并不限制LPS诱导的皮质类固醇释放的抗炎作用。我们发现ARB对HPA轴的影响取决于应力的类型。在隔离应力期间,ARB可防止HPA轴激活,但不能阻止HPA轴对炎症的反应。 我们还发现,ARB通过抑制大鼠基因座的压力诱导的酪氨酸羟化酶基因转录来防止应力诱导的脑交感神经活动的增加。现在,我们的实验集中在阐明酪氨酸羟化酶转录的ARB控制的机制上,调节脊髓脑核中皮质营养蛋白释放因子的调节以及对ARBS抗压力效应的其他脑位点的确定。 为此,我们结合了选择性解剖技术,基因微阵列和蛋白质组学研究。
总之,我们在2008财年证明了ARB可以被视为一种新型的多任务抗压力,抗焦虑,抗炎药在治疗脑疾病时。它们已经被广泛用于治疗人类的高血压,并且安全且缺乏上瘾的特性,阐明其作用机制可能会导致其他具有巨大治疗潜力的化合物的发展。
项目成果
期刊论文数量(47)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The future of Latin American science.
拉丁美洲科学的未来。
- DOI:10.1023/a:1021853625299
- 发表时间:2002
- 期刊:
- 影响因子:4
- 作者:Saavedra,JuanM
- 通讯作者:Saavedra,JuanM
Intracisternal administration of Angiotensin II AT1 receptor antisense oligodeoxynucleotides protects against cerebral ischemia in spontaneously hypertensive rats.
血管紧张素 II AT1 受体反义寡脱氧核苷酸的脑池内给药可预防自发性高血压大鼠的脑缺血。
- DOI:10.1016/s0167-0115(02)00264-1
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Yamakawa,Haruki;Phillips,MIan;Saavedra,JuanM
- 通讯作者:Saavedra,JuanM
Increased AT(1) receptor expression and mRNA in kidney glomeruli of AT(2) receptor gene-disrupted mice.
AT(2) 受体基因破坏小鼠肾小球中 AT(1) 受体表达和 mRNA 增加。
- DOI:10.1152/ajprenal.2001.280.1.f71
- 发表时间:2001
- 期刊:
- 影响因子:0
- 作者:Saavedra,JM;Hauser,W;Ciuffo,G;Egidy,G;Hoe,KL;Johren,O;Sembonmatsu,T;Inagami,T;Armando,I
- 通讯作者:Armando,I
Gerbil angiotensin II AT1 receptors are highly expressed in the hippocampus and cerebral cortex during postnatal development.
沙鼠血管紧张素 II AT1 受体在出生后发育过程中在海马和大脑皮层中高度表达。
- DOI:10.1016/s0306-4522(99)00514-x
- 发表时间:2000
- 期刊:
- 影响因子:3.3
- 作者:Tonelli,L;Johren,O;Hoe,KL;Hauser,W;Saavedra,JM
- 通讯作者:Saavedra,JM
Chronic peripheral administration of the angiotensin II AT(1) receptor antagonist candesartan blocks brain AT(1) receptors.
血管紧张素 II AT(1) 受体拮抗剂坎地沙坦的长期外周给药可阻断脑 AT(1) 受体。
- DOI:10.1016/s0006-8993(00)02377-5
- 发表时间:2000
- 期刊:
- 影响因子:2.9
- 作者:Nishimura,Y;Ito,T;Hoe,K;Saavedra,JM
- 通讯作者:Saavedra,JM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JUAN M SAAVEDRA其他文献
JUAN M SAAVEDRA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JUAN M SAAVEDRA', 18)}}的其他基金
Brain pathophysiology in SARS-CoV-2 disease
SARS-CoV-2 疾病的脑病理生理学
- 批准号:
10317394 - 财政年份:2021
- 资助金额:
$ 230.13万 - 项目类别:
Brain pathophysiology in SARS-CoV-2 disease
SARS-CoV-2 疾病的脑病理生理学
- 批准号:
10617754 - 财政年份:2021
- 资助金额:
$ 230.13万 - 项目类别:
Brain pathophysiology in SARS-CoV-2 disease
SARS-CoV-2 疾病的脑病理生理学
- 批准号:
10434951 - 财政年份:2021
- 资助金额:
$ 230.13万 - 项目类别:
Mechanistic studies on stress, brain inflammation and neuroprotection
压力、脑炎症和神经保护的机制研究
- 批准号:
8342121 - 财政年份:
- 资助金额:
$ 230.13万 - 项目类别:
Role Of Neuropeptides And Biogenic Amines In Stress And
神经肽和生物胺在压力和压力中的作用
- 批准号:
6507482 - 财政年份:
- 资助金额:
$ 230.13万 - 项目类别:
Role Of Neuropeptides And Biogenic Amines In Stress And
神经肽和生物胺在压力和压力中的作用
- 批准号:
6824171 - 财政年份:
- 资助金额:
$ 230.13万 - 项目类别:
Mechanistic studies on stress, brain inflammation and neuroprotection
压力、脑炎症和神经保护的机制研究
- 批准号:
8745697 - 财政年份:
- 资助金额:
$ 230.13万 - 项目类别:
Role Of Neuropeptides And Biogenic Amines In Stress and Brain Inflammation
神经肽和生物胺在压力和脑炎症中的作用
- 批准号:
7969333 - 财政年份:
- 资助金额:
$ 230.13万 - 项目类别:
Role Of Neuropeptides And Biogenic Amines In Stress and Brain Inflammation
神经肽和生物胺在压力和脑炎症中的作用
- 批准号:
7594528 - 财政年份:
- 资助金额:
$ 230.13万 - 项目类别:
ROLE OF NEUROPEPTIDES AND BIOGENIC AMINES IN STRESS AND BRAIN ISCHEMIA
神经肽和生物胺在压力和脑缺血中的作用
- 批准号:
6290596 - 财政年份:
- 资助金额:
$ 230.13万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Role of IL-6 trans signaling in atherosclerosis development and late-stage pathogenesis
IL-6反式信号传导在动脉粥样硬化发展和晚期发病机制中的作用
- 批准号:
10652788 - 财政年份:2023
- 资助金额:
$ 230.13万 - 项目类别:
A Novel Approach to Target Neutrophilic Airway Inflammation and Airway Hyperresponsiveness in Therapy-Resistant (Refractory) Asthma.
一种针对难治性哮喘中性粒细胞性气道炎症和气道高反应性的新方法。
- 批准号:
10659658 - 财政年份:2023
- 资助金额:
$ 230.13万 - 项目类别:
An Inhaled Microbiome-Targeted Biotherapeutic for Treatment of COPD
一种吸入性微生物组靶向生物治疗药物,用于治疗慢性阻塞性肺病
- 批准号:
10600887 - 财政年份:2023
- 资助金额:
$ 230.13万 - 项目类别:
Achieving Sustained Control of Inflammation to Prevent Post-Traumatic Osteoarthritis (PTOA)
实现炎症的持续控制以预防创伤后骨关节炎 (PTOA)
- 批准号:
10641225 - 财政年份:2023
- 资助金额:
$ 230.13万 - 项目类别: