Acquistion of multimode plate reader for "Investigation of the physiological significance of protein acetylation in Bacillus subtilis"
购买多模式读板机用于“枯草芽孢杆菌蛋白质乙酰化的生理意义研究”
基本信息
- 批准号:10807381
- 负责人:
- 金额:$ 5.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcetylationAcetyltransferaseAddressAffectBacillus subtilisBacteriaBacterial PhysiologyBacterial ProteinsBiochemicalBiological ProcessBiologyCell divisionCell physiologyChromosome StructuresChromosomesCodeDNADeacetylationDevelopmentDrug TargetingDrug ToleranceEnzymesEukaryotaFoundationsGene ExpressionGenetic RecombinationGoalsHistone AcetylationHistone CodeHistonesInvestigationKnowledgeLysineMass Spectrum AnalysisModelingModificationN-terminalPhasePhysiologicalPost-Translational Protein ProcessingProcessProtein AcetylationProtein FamilyProteinsProteomicsReaderRegulationResearchSiteTailTechniquesWorkantimicrobialantimicrobial drugdesigninhibitormembernovelprogramsrepaired
项目摘要
ABSTRACT
Until recently, N-lysine acetylation was thought to be rare in bacteria, but is now appreciated to affect hundreds of
bacterial proteins with diverse cellular functions. Acetylation was initially discovered as a post-translational modification
(PTM) on the unstructured, highly basic N-terminal tails of eukaryotic histones. Histone acetylation constitutes part of the
“histone code,” and regulates chromosome compaction and various DNA processes, such as gene expression, replication,
repair and recombination. In eukaryotes, acetylation regulates many other proteins in addition to histones, involved in a
wide array of important biological processes. This observation is also true in bacteria, as evidenced by the characterization
of the acetylomes of more than 30 different bacterial species. However, the physiological significance of the vast majority
of these modifications remains unknown. In addition, the mechanisms of acetylation and deacetylation, and the
bacterial enzymes involved are not completely understood. To address these gaps in knowledge, we have focused on
studying the acetylation of the essential, histone-like protein HBsu in Bacillus subtilis. In bacteria, the nucleoid is
compacted and organized by the action of nucleoid-associated proteins (NAPs). HBsu is a member of the most widely
conserved NAP family, and is considered a functional equivalent of eukaryotic histones. We found that HBsu contains
seven novel acetylation sites, and this raised the exciting possibility that these modifications represent a “histone-like”
code in bacteria. So far, we discovered that acetylation of HBsu at key lysine residues is required to maintain normal
chromosome compaction. Additionally, we identified the second protein acetyltransferase in B. subtilis. The overall goal
of our research program is to decipher this code. Our recent progress supports the hypotheses that acetylation of HBsu
regulates cell division and sporulation, and that there are additional enzymes involved in regulating acetylation. The short-
term goals of this work are to define the enzymatic mechanism of regulation of HBsu acetylation and determine the
significance of HBsu acetylation in the regulation of DNA transactions, stationary phase development and drug tolerance.
Additionally, we will develop new biochemical and mass-spectrometry based proteomics techniques for the study of
acetylation in bacteria. Our long-term goals are to characterize additional HBsu PTMs, identify and characterize novel
enzymes of acetylation, and perform a detailed structural and biochemical analysis with acetylated HBsu and novel
enzymes. Ultimately, we will design novel inhibitors of bacterial acetylation enzymes or acetylated HBsu and assess their
efficacy as potential novel antimicrobial therapies. Together, these studies may demonstrate the existence of a histone-
like code in bacteria, an unexpected and exciting new field of biology. Furthermore, these studies will provide the
foundation for designing novel antimicrobial drugs that target protein acetylation, either the enzymes or key acetylated
targets.
抽象的
直到最近,N-赖氨酸乙酰化还被认为在细菌中很少见,但现在人们认识到它会影响数百种细菌。
具有多种细胞功能的细菌蛋白最初被发现是一种翻译后修饰。
(PTM) 位于真核组蛋白的非结构化、高碱性 N 末端尾部,构成了组蛋白乙酰化的一部分。
“组蛋白密码”,并调节染色体压缩和各种 DNA 过程,例如基因表达、复制、
在真核生物中,除了组蛋白之外,乙酰化还调节许多其他蛋白质,参与修复和重组。
正如表征所证明的那样,这一观察结果在细菌中也是正确的。
然而,超过 30 种不同细菌物种的乙酰基组具有生理意义。
此外,乙酰化和脱乙酰化的机制以及
所涉及的细菌酶尚未完全了解。为了解决这些知识空白,我们将重点放在了研究上。
研究枯草芽孢杆菌中必需的组蛋白样蛋白 HBsu 的乙酰化。在细菌中,类核是。
通过类核相关蛋白 (NAP) 的作用来压缩和组织,是最广泛的成员之一。
保守的 NAP 家族,被认为是真核组蛋白的功能等同物。我们发现 HBsu 含有。
七个新的乙酰化位点,这提出了令人兴奋的可能性,即这些修饰代表了“组蛋白样”
到目前为止,我们发现 HBsu 在关键赖氨酸残基上的乙酰化是维持正常状态所必需的。
此外,我们还确定了枯草芽孢杆菌中的第二种蛋白质乙酰转移酶。
我们研究计划的重点是破译这个密码,我们最近的进展支持了 HBsu 乙酰化的假设。
调节细胞分裂和孢子形成,并且还有其他酶参与调节乙酰化。
这项工作的长期目标是定义 HBsu 乙酰化调节的酶促机制并确定
HBsu 乙酰化在 DNA 交易、稳定期发育和药物耐受性调节中的重要性。
此外,我们将开发新的基于生化和质谱的蛋白质组学技术来研究
我们的长期目标是表征其他 HBsu PTM,识别和表征新的。
乙酰化酶,并使用乙酰化 HBsu 和新型酶进行详细的结构和生化分析
最终,我们将设计新型细菌乙酰化酶或乙酰化 HBsu 抑制剂并评估其效果。
作为潜在的新型抗菌疗法的功效,这些研究可能证明了组蛋白的存在。
就像细菌中的代码一样,这是一个意想不到的、令人兴奋的生物学新领域。此外,这些研究将提供
为设计针对蛋白质乙酰化(酶或关键乙酰化)的新型抗菌药物奠定了基础
目标。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The use of next-generation sequencing in personalized medicine.
下一代测序在个性化医疗中的应用。
- DOI:
- 发表时间:2024-03-06
- 期刊:
- 影响因子:0
- 作者:Popova, Liya;Carabetta, Valerie J
- 通讯作者:Carabetta, Valerie J
Addressing the Possibility of a Histone-Like Code in Bacteria.
解决细菌中类组蛋白密码的可能性。
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:4.4
- 作者:Carabetta; Valerie J
- 通讯作者:Valerie J
Contribution of Nε-lysine Acetylation towards Regulation of Bacterial Pathogenesis.
Nβ-赖氨酸乙酰化对细菌发病机制调节的贡献。
- DOI:
- 发表时间:2021-08-31
- 期刊:
- 影响因子:6.4
- 作者:Luu, Jackson;Carabetta, Valerie J
- 通讯作者:Carabetta, Valerie J
Nε-Lysine Acetylation of the Histone-Like Protein HBsu Regulates the Process of Sporulation and Affects the Resistance Properties of Bacillus subtilis Spores.
组蛋白样蛋白 HBsu 的 Nβ-赖氨酸乙酰化调节孢子形成过程并影响枯草芽孢杆菌孢子的抗性特性。
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Luu, Jackson;Mott, Connor M;Schreiber, Olivia R;Giovinco, Holly M;Betchen, Melanie;Carabetta, Valerie J
- 通讯作者:Carabetta, Valerie J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Valerie Jean Carabetta其他文献
Valerie Jean Carabetta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Valerie Jean Carabetta', 18)}}的其他基金
Investigation of the physiological significance of protein acetylation in Bacillus subtilis
枯草芽孢杆菌蛋白质乙酰化生理意义的研究
- 批准号:
10028562 - 财政年份:2020
- 资助金额:
$ 5.87万 - 项目类别:
Investigation of the physiological significance of protein acetylation in Bacillus subtilis
枯草芽孢杆菌蛋白质乙酰化生理意义的研究
- 批准号:
10247780 - 财政年份:2020
- 资助金额:
$ 5.87万 - 项目类别:
Investigation of the physiological significance of protein acetylation in Bacillus subtilis
枯草芽孢杆菌蛋白质乙酰化生理意义的研究
- 批准号:
10659029 - 财政年份:2020
- 资助金额:
$ 5.87万 - 项目类别:
Investigation of the physiological significance of protein acetylation in Bacillus subtilis
枯草芽孢杆菌蛋白质乙酰化生理意义的研究
- 批准号:
10436383 - 财政年份:2020
- 资助金额:
$ 5.87万 - 项目类别:
相似国自然基金
组蛋白乙酰转移酶CSRP2BP促进上皮性卵巢癌转移的机制研究
- 批准号:82360496
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
水稻DNA 4acC修饰乙酰转移酶的鉴定及其在冷胁迫响应中的功能研究
- 批准号:32300470
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
FHF1招募乙酰转移酶p300调控复极储备在心肌肥厚室性心律失常中的作用及机制
- 批准号:82360072
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
N-乙酰转移酶NAT10调控胰岛β细胞功能的作用和机制研究
- 批准号:82370825
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
组蛋白乙酰转移酶GCN5调控糖脂代谢促进胶质母细胞瘤干细胞活力的机制与功能研究
- 批准号:82373095
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Mechanisms of GM-CSF-mediated metabolic regulation of monocyte function for control of pulmonary infection
GM-CSF介导的单核细胞功能代谢调节控制肺部感染的机制
- 批准号:
10877377 - 财政年份:2023
- 资助金额:
$ 5.87万 - 项目类别:
Investigating HDAC3 phosphorylation as an epigenetic regulator of memory formation in the adult and aging brain
研究 HDAC3 磷酸化作为成人和衰老大脑记忆形成的表观遗传调节剂
- 批准号:
10752404 - 财政年份:2023
- 资助金额:
$ 5.87万 - 项目类别:
Investigating essential chromatin regulators in cancers with SWI/SNF mutations
研究具有 SWI/SNF 突变的癌症中的必需染色质调节因子
- 批准号:
10607451 - 财政年份:2023
- 资助金额:
$ 5.87万 - 项目类别:
Scalable platforms for understudied histone modifications and modifiers
用于未充分研究的组蛋白修饰和修饰剂的可扩展平台
- 批准号:
10567849 - 财政年份:2023
- 资助金额:
$ 5.87万 - 项目类别:
Epigenetic mechanisms of disrupted neurodevelopment in Menke-Hennekam syndrome
Menke-Hennekam 综合征神经发育障碍的表观遗传机制
- 批准号:
10816703 - 财政年份:2023
- 资助金额:
$ 5.87万 - 项目类别: