GPU-based computing for structural biophysics in immune recognition
基于 GPU 的免疫识别结构生物物理学计算
基本信息
- 批准号:10796479
- 负责人:
- 金额:$ 23.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressBehaviorBindingBiochemistryBiological ModelsBiologyBiophysicsCell Signaling ProcessCellular ImmunityCellular ImmunologyComplexElementsEngineered GeneFundingGoalsImmuneImmune responseImmune systemImmunologyImmunotherapyInstructionLearningLigandsMHC InteractionModelingMolecularMolecular ImmunologyNational Institute of General Medical SciencesOutcomePeptide ReceptorPeptide/MHC ComplexPeptidesPhysical ChemistryProcessPropertyProtein DynamicsProteinsResearchSignal TransductionSpecificitySystemT-Cell ReceptorT-LymphocyteWorkcross reactivitydesignengineered T cellsimmune system functionimmunogenicityimprovedinsightlensmolecular recognitionnew growthnovel therapeutic interventionpeptide based vaccinereceptorstructural biologysuccess
项目摘要
Abstract
Our NIGMS-funded research emphasizes the interface between structural biology, molecular biophysics, and
immunology. Broadly speaking, we aim to connect the fundamental physical principles that govern protein
behavior with function in the immune system, relying on a wide variety of approaches in biophysics, structural
biology, computational biochemistry, and molecular immunology. In addition to providing mechanistic insight into
immunology, our work in this interface has been instructional for addressing basic rules of biomolecular
recognition and other protein behavior, as well as in the modeling and design of complex systems. In this
renewal, we propose to continue this interdisciplinary focus. Our studies emphasize T cell receptors (TCRs) and
their ligands, short peptides bound and “presented” by major histocompatibility complex proteins (peptide/MHC
complexes). TCR recognition of peptide/MHC complexes is the cornerstone of cellular immunity, as it defines
specificity and initiates the signaling that leads to T cell immune responses. Owing to the high diversity in both
receptor and ligand, as well as the myriad of processes in which these molecules participate, the TCRs-
peptide/MHC interaction is recognized as one of the most complex in biology. Deconstructing how specificity
emerges in the face of this extraordinary complexity, learning how to predict and manipulate TCR recognition
properties, and understanding the biophysics of T cell signaling processes remains at the core of our studies.
We are motivated not only by the desire to gain further mechanistic insight, but also by the growth of new
therapeutic approaches such as gene-engineered T cells and peptide-based vaccines. While there have been
immunotherapy successes, there have also been significant complications and confounding outcomes. It is
widely understood that an improved understanding of the fundamentals of immune recognition is needed for
such therapies to reach their potential. Our goals for the next five years include improving our understanding of
the mechanisms of TCR cross-reactivity and specificity, with an eventual goal of using structural information and
modeling to identify cross-reactive ligands. Advances here will require concomitant improvements in our ability
to model and score suboptimal (or as we call them, “sloppy”) protein-protein interfaces, which is a major part of
our focus. We also plan to assess the mechanism of enigmatic “catch bonds” in TCR-peptide/MHC interfaces
through the lens of physical chemistry, a view which has been largely absent from the discussion of catch bonds
in immunology. We also aim to bring elements of physical chemistry and structural biology into predictions of
immunogenicity, tackling this by considering the biophysics of protein-protein molecular recognition. Lastly, we
aim to continue our work on dynamic allostery, studying how protein dynamics contribute to immune recognition
and the still poorly-understood mechanism of T cell triggering. Our work remains highly collaborative and
interdisciplinary, allowing it to impact multiple fields in molecular and cellular immunology and protein biophysics.
抽象的
我们的 NIGMS 资助的研究强调结构生物学、分子生物物理学和
从广义上讲,我们的目标是将控制蛋白质的基本物理原理联系起来。
免疫系统中具有功能的行为,依赖于生物物理学、结构学等多种方法
生物学、计算生物化学和分子免疫学。
免疫学,我们在这个界面中的工作对于解决生物分子的基本规则具有指导意义
识别和其他蛋白质行为,以及复杂系统的建模和设计。
更新,我们建议继续这一跨学科重点,我们的研究强调 T 细胞受体 (TCR) 和
它们的配体、短肽结合并由主要组织相容性复合体蛋白(肽/MHC
TCR 识别肽/MHC 复合物是细胞免疫的基石,正如它定义的那样
由于两者的高度多样性,它们具有特异性并启动导致 T 细胞免疫反应的信号传导。
受体和配体,以及这些分子参与的无数过程,TCRs-
肽/MHC 相互作用被认为是生物学中最复杂的相互作用之一。
面对这种异常复杂的情况,学习如何预测和操纵 TCR 识别
特性以及了解 T 细胞信号传导过程的生物物理学仍然是我们研究的核心。
我们的动力不仅在于获得进一步的机械洞察力的愿望,而且还在于新知识的增长
基因工程 T 细胞和肽疫苗等治疗方法已经存在。
免疫疗法取得了成功,但也出现了严重的并发症和令人困惑的结果。
人们普遍认为,需要更好地了解免疫识别的基本原理
我们未来五年的目标包括提高我们对此类疗法的理解。
TCR 交叉反应性和特异性的机制,最终目标是利用结构信息和
识别交叉反应配体的建模需要我们能力的相应提高。
对次优(或者我们称之为“草率”)蛋白质-蛋白质界面进行建模和评分,这是
我们还计划评估 TCR 肽/MHC 界面中神秘的“捕获键”机制。
从物理化学的角度来看,这种观点在捕获键的讨论中基本上没有出现
我们还致力于将物理化学和结构生物学的元素引入免疫学的预测中。
免疫原性,通过考虑蛋白质-蛋白质分子识别的生物物理学来解决这个问题。
旨在继续我们在动态变构方面的工作,研究蛋白质动力学如何促进免疫识别
我们对 T 细胞触发机制仍然知之甚少,但我们的工作仍然是高度协作和的。
跨学科,使其能够影响分子和细胞免疫学以及蛋白质生物物理学的多个领域。
项目成果
期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Engineered Switch in T Cell Receptor Specificity Leads to an Unusual but Functional Binding Geometry.
T 细胞受体特异性的工程转换产生了不寻常但功能性的结合几何结构。
- DOI:
- 发表时间:2016-07-06
- 期刊:
- 影响因子:0
- 作者:Harris, Daniel T;Singh, Nishant K;Cai, Qi;Smith, Sheena N;Vander Kooi, Craig;Procko, Erik;Kranz, David M;Baker, Brian M
- 通讯作者:Baker, Brian M
Modeling Sequence-Dependent Peptide Fluctuations in Immunologic Recognition.
免疫识别中序列依赖性肽波动的建模。
- DOI:
- 发表时间:2017-08-28
- 期刊:
- 影响因子:0
- 作者:Ayres, Cory M;Riley, Timothy P;Corcelli, Steven A;Baker, Brian M
- 通讯作者:Baker, Brian M
Synthesis and Biological Evaluation of Hapten-Clicked Analogues of The Antigenic Peptide Melan-A/MART-126(27L)-35.
抗原肽 Melan-A/MART-126(27L)-35 的半抗原点击类似物的合成和生物学评价。
- DOI:
- 发表时间:2020-05-06
- 期刊:
- 影响因子:3.4
- 作者:Tarbe, Marion;Miles, John J;Edwards, Emily S J;Miles, Kim M;Sewell, Andrew K;Baker, Brian M;Quideau, Stéphane
- 通讯作者:Quideau, Stéphane
Tumor rejection properties of gp100209-specific T cells correlate with T cell receptor binding affinity towards the wild type rather than anchor-modified antigen.
gp100209 特异性 T 细胞的肿瘤排斥特性与 T 细胞受体对野生型而非锚定修饰抗原的结合亲和力相关。
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:3.6
- 作者:Alonso, Jesus A;Smith, Angela R;Baker, Brian M
- 通讯作者:Baker, Brian M
MHC Bias by T Cell Receptors: Genetic Evidence for MHC and TCR Coevolution.
T 细胞受体的 MHC 偏差:MHC 和 TCR 共同进化的遗传证据。
- DOI:10.1016/j.it.2016.11.003
- 发表时间:2017-01
- 期刊:
- 影响因子:16.8
- 作者:Baker BM;Evavold BD
- 通讯作者:Evavold BD
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian M Baker其他文献
Brian M Baker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian M Baker', 18)}}的其他基金
Mechanisms and manipulation of force dependent behavior in T cell biology
T 细胞生物学中力依赖性行为的机制和操纵
- 批准号:
10681766 - 财政年份:2023
- 资助金额:
$ 23.04万 - 项目类别:
Structural biophysics and molecular design in cellular immunity
细胞免疫中的结构生物物理学和分子设计
- 批准号:
9906945 - 财政年份:2016
- 资助金额:
$ 23.04万 - 项目类别:
Structural biophysics and molecular design in cellular immunity
细胞免疫中的结构生物物理学和分子设计
- 批准号:
10205576 - 财政年份:2016
- 资助金额:
$ 23.04万 - 项目类别:
Structural biophysics and molecular design in cellular immunity
细胞免疫中的结构生物物理学和分子设计
- 批准号:
10391537 - 财政年份:2016
- 资助金额:
$ 23.04万 - 项目类别:
High capacity protein purification for structural immunology
用于结构免疫学的高容量蛋白质纯化
- 批准号:
9309415 - 财政年份:2016
- 资助金额:
$ 23.04万 - 项目类别:
Structural biophysics and molecular design in cellular immunity
细胞免疫中的结构生物物理学和分子设计
- 批准号:
9265480 - 财政年份:2016
- 资助金额:
$ 23.04万 - 项目类别:
Structural biophysics and molecular design in cellular immunity
细胞免疫中的结构生物物理学和分子设计
- 批准号:
10610363 - 财政年份:2016
- 资助金额:
$ 23.04万 - 项目类别:
Structural biophysics and molecular design in cellular immunity
细胞免疫中的结构生物物理学和分子设计
- 批准号:
9071715 - 财政年份:2016
- 资助金额:
$ 23.04万 - 项目类别:
Building better T cell receptors for targeted immunotherapy
为靶向免疫治疗构建更好的 T 细胞受体
- 批准号:
9388963 - 财政年份:2016
- 资助金额:
$ 23.04万 - 项目类别:
相似国自然基金
碳基电磁屏蔽复合材料的双层结构设计及其吸收行为研究
- 批准号:52302364
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于全文本引文解构的引用失范行为识别与生成机理研究
- 批准号:72304181
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于行为因果推理的跨网络用户对齐技术研究
- 批准号:62302303
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中熵合金低温协同强化及其多场耦合环境下应力腐蚀行为的研究
- 批准号:52371070
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向真实场景的基于人体关节点的行为理解研究
- 批准号:62302093
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Next Generation Opto-GPCRs for Neuromodulatory Control
用于神经调节控制的下一代 Opto-GPCR
- 批准号:
10515612 - 财政年份:2023
- 资助金额:
$ 23.04万 - 项目类别:
Crosstalk Between Nurr1 and Risk Factors of Parkinson's Disease and its Regulation by Nurr1's Ligands
Nurr1与帕金森病危险因素的串扰及其配体的调控
- 批准号:
10677221 - 财政年份:2023
- 资助金额:
$ 23.04万 - 项目类别:
Genetic interactions among targets of master regulator genes as drivers of complex behavior in Drosophila intestinal stem cells
主调节基因靶标之间的遗传相互作用作为果蝇肠道干细胞复杂行为的驱动因素
- 批准号:
10629992 - 财政年份:2023
- 资助金额:
$ 23.04万 - 项目类别:
Gain-of-function complement activators as a new class of immunotherapeutic molecules
功能获得性补体激活剂作为一类新型免疫治疗分子
- 批准号:
10629623 - 财政年份:2023
- 资助金额:
$ 23.04万 - 项目类别:
Exploring the function and shedding of a potential C. elegans Neuregulin
探索潜在的线虫神经调节蛋白的功能和脱落
- 批准号:
10629996 - 财政年份:2023
- 资助金额:
$ 23.04万 - 项目类别: