Mathematical Modeling and Scientific Computing for Infectious Disease Research
传染病研究的数学建模和科学计算
基本信息
- 批准号:10793008
- 负责人:
- 金额:$ 33.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-22 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsBehaviorCOVID-19COVID-19 pandemicChronic DiseaseClinicalClinical ResearchCollaborationsCommunicable DiseasesComplexComputational TechniqueComputer ModelsComputing MethodologiesDataDevelopmentDiffusionDiseaseDisease ManagementDisease OutbreaksEconomic BurdenEducational process of instructingEmerging Communicable DiseasesEnvironmentEpidemicEpidemiologic MethodsEpidemiologyEquationGuidelinesHealthHealth PlanningInfectious Diseases ResearchInstitutionInterventionKnowledgeLearningLiquid substanceLong COVIDMathematicsMethodsMissionModelingMorbidity - disease rateOutcomePersonsPolicy DevelopmentsPopulationPopulation DynamicsPrevalenceProcessPublic HealthPublic Health AdministrationReactionResearchResearch PersonnelRouteSARS-CoV-2 infectionSARS-CoV-2 transmissionScientistSolidSystemTechniquesTheoretical StudiesUnited States National Institutes of HealthUniversitiesVaccinationValidationVariantVulnerable PopulationsWorkcohortcomputer studiesdisease transmissiondisorder controlexperienceexperimental studyhealth managementimprovedinfectious disease modelinnovationinsightinterdisciplinary collaborationinterestknowledge basemathematical methodsmathematical modelmortalitynoveloutbreak responseprevent pandemicspublic health relevancescaffoldscientific computingsimulationsuccesstooltransmission processundergraduate research experienceundergraduate studentvaccine hesitancy
项目摘要
Project Summary/Abstract
Emerging and reemerging infectious diseases represent a tremendous health and economic burden
throughout the world. The COVID-19 pandemic underscores the gap between the complex mechanisms
of disease transmission and spread and our current knowledge and intervention strategies. Several critical
issues such as the emergence of new variants, the consequence of vaccine hesitancy, the presence of
environmental transmission, the impact of underlying health conditions and behaviors, and the prediction
of disease spread, which are related to COVID-19 and applicable to a wide variety of infectious diseases,
are only partially and inadequately addressed at present. Mathematical and computational studies can
provide key insights into these challenges and improve our understanding of disease transmission, spread,
and progression. The overall objective of this proposal is to establish a new mathematical and
computational modeling framework for infectious diseases, with a focus on COVID-19, that integrates novel
mathematical modeling, extensive numerical simulation, and rigorous data validation. To achieve this
objective, we will pursue three Specific Aims: (1) Modeling the transmission dynamics of infectious
diseases; (2) Modeling the impact of underlying health conditions; and (3) Modeling the spatial spread of
infectious diseases. The proposed research is significant because it is expected to substantially advance
our current understanding of the complex dynamics associated with COVID-19 and many other infectious
diseases, which will potentially improve our current practice in disease control and outbreak management.
The approach is innovative in the development of novel mathematical models and advanced computational
techniques to address pressing needs for infectious disease research, in the integration of mathematical,
computational, and epidemiological methods, and in the involvement of undergraduate students for
authentic research through a progressive learning process. The project represents an interdisciplinary
collaboration between an applied and computational mathematician and a public health scientist who have
worked with each other for several years. A cohort of 5 undergraduate students per year, for a total of 15
over three years, will be supported by the project. The success of this project will build a solid knowledge
base for the complex dynamics of infectious diseases, will provide important guidelines for the public health
administrations in disease management and policy development, and will create a novel platform for
engaging undergraduate researchers and strengthening the institutional research environment.
项目概要/摘要
新出现和重新出现的传染病带来了巨大的健康和经济负担
全世界。 COVID-19 大流行凸显了复杂机制之间的差距
疾病传播和传播以及我们当前的知识和干预策略。几个关键的
诸如新变种的出现、疫苗犹豫的后果、病毒的存在等问题
环境传播、潜在健康状况和行为的影响以及预测
疾病传播,与 COVID-19 相关并适用于多种传染病,
目前仅部分得到充分解决。数学和计算研究可以
提供对这些挑战的关键见解,并提高我们对疾病传播、传播、
和进展。该提案的总体目标是建立一个新的数学和
传染病计算建模框架,重点关注 COVID-19,集成了新颖的
数学建模、广泛的数值模拟和严格的数据验证。为了实现这一目标
为了实现这一目标,我们将追求三个具体目标:(1)对传染病的传播动态进行建模
疾病; (2) 对潜在健康状况的影响进行建模; (3) 模拟空间扩散
传染病。拟议的研究意义重大,因为预计它将大大推进
我们目前对与 COVID-19 和许多其他传染病相关的复杂动态的了解
疾病,这将有可能改善我们目前在疾病控制和疫情管理方面的做法。
该方法在开发新颖的数学模型和高级计算方面具有创新性
解决传染病研究迫切需求的技术,融合了数学、
计算和流行病学方法,以及本科生的参与
通过渐进的学习过程进行真实的研究。该项目代表了一个跨学科的
应用和计算数学家与公共卫生科学家之间的合作
彼此合作了几年。每年 5 名本科生,总共 15 名
三年内,将得到该项目的支持。该项目的成功将建立扎实的知识
传染病复杂动态的基础,将为公共卫生提供重要指导
疾病管理和政策制定方面的主管部门,并将创建一个新的平台
吸引本科研究人员并加强机构研究环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jin Wang其他文献
Network Coded Wireless Cooperative Multicast with Minimum Transmission Cost
具有最低传输成本的网络编码无线协作组播
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Xiumin Wang;Jin Wang;Shukui Zhang - 通讯作者:
Shukui Zhang
Jin Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jin Wang', 18)}}的其他基金
Development of First-in-Class RIPK1 Degraders to Improve Cancer Immunotherapies
开发一流的 RIPK1 降解剂以改善癌症免疫疗法
- 批准号:
10390589 - 财政年份:2022
- 资助金额:
$ 33.12万 - 项目类别:
Development of First-in-Class RIPK1 Degraders to Improve Cancer Immunotherapies
开发一流的 RIPK1 降解剂以改善癌症免疫疗法
- 批准号:
10661495 - 财政年份:2022
- 资助金额:
$ 33.12万 - 项目类别:
Development of First-in-Class RIPK1 Degraders to Improve Cancer Immunotherapies
开发一流的 RIPK1 降解剂以改善癌症免疫疗法
- 批准号:
10746264 - 财政年份:2022
- 资助金额:
$ 33.12万 - 项目类别:
Developing Novel Soluble Epoxide Hydrolase Inhibitors for the Treatment of Alzheimer's Disease
开发用于治疗阿尔茨海默病的新型可溶性环氧化物水解酶抑制剂
- 批准号:
10412114 - 财政年份:2020
- 资助金额:
$ 33.12万 - 项目类别:
Reversible Covalent BTK Degraders as the Next Generation Targeted Therapy to Treat B-cell Malignancies
可逆共价 BTK 降解剂作为治疗 B 细胞恶性肿瘤的下一代靶向疗法
- 批准号:
10442373 - 财政年份:2020
- 资助金额:
$ 33.12万 - 项目类别:
Developing Novel Soluble Epoxide Hydrolase Inhibitors for the Treatment of Alzheimer's Disease
开发用于治疗阿尔茨海默病的新型可溶性环氧化物水解酶抑制剂
- 批准号:
10261446 - 财政年份:2020
- 资助金额:
$ 33.12万 - 项目类别:
Reversible Covalent BTK Degraders as the Next Generation Targeted Therapy to Treat B-cell Malignancies
可逆共价 BTK 降解剂作为治疗 B 细胞恶性肿瘤的下一代靶向疗法
- 批准号:
10166809 - 财政年份:2020
- 资助金额:
$ 33.12万 - 项目类别:
Developing Novel Soluble Epoxide Hydrolase Inhibitors for the Treatment of Alzheimer's Disease
开发用于治疗阿尔茨海默病的新型可溶性环氧化物水解酶抑制剂
- 批准号:
10802956 - 财政年份:2020
- 资助金额:
$ 33.12万 - 项目类别:
Reversible Covalent BTK Degraders as the Next Generation Targeted Therapy to Treat B-cell Malignancies
可逆共价 BTK 降解剂作为治疗 B 细胞恶性肿瘤的下一代靶向疗法
- 批准号:
10442373 - 财政年份:2020
- 资助金额:
$ 33.12万 - 项目类别:
Developing Novel Soluble Epoxide Hydrolase Inhibitors for the Treatment of Alzheimer's Disease
开发用于治疗阿尔茨海默病的新型可溶性环氧化物水解酶抑制剂
- 批准号:
10663178 - 财政年份:2020
- 资助金额:
$ 33.12万 - 项目类别:
相似国自然基金
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
人工智能算法嵌入街头官僚决策的行为效应及其认知触发机制研究
- 批准号:72304110
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多种生物标志物和机器学习算法构建特发性快速眼动睡眠行为障碍向α-突触核蛋白病转化的预测模型研究
- 批准号:82201401
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 33.12万 - 项目类别:
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 33.12万 - 项目类别:
Comprehensive analysis of macromolecule structural variability in CryoEM/CryoET
CryoEM/CryoET 中大分子结构变异性的综合分析
- 批准号:
10711754 - 财政年份:2023
- 资助金额:
$ 33.12万 - 项目类别:
Dynamic embedding time series models in functional brain imaging
功能性脑成像中的动态嵌入时间序列模型
- 批准号:
10711521 - 财政年份:2023
- 资助金额:
$ 33.12万 - 项目类别:
A mega-analysis framework for delineating autism neurosubtypes
描述自闭症神经亚型的大型分析框架
- 批准号:
10681965 - 财政年份:2023
- 资助金额:
$ 33.12万 - 项目类别: