Biophysics of the morphology and motility of Borrelia burgdorferi in diverse envi

不同环境下伯氏疏螺旋体形态和运动的生物物理学

基本信息

项目摘要

DESCRIPTION (provided by applicant): which is caused by the spirochete Borrelia burgdorferi, is the most common tick-transmitted illness in the United States. If untreated, Lyme disease can lead to a wide array of complications typically involving the heart, joints, or nervous system. It is widely believed that the motility of B. burgdorferi is essential for the pathogenesis of Lyme disease. B. burgdorferi swims by rotating helical filaments (flagella) that reside in the periplasmic space (the space between the outer membrane and the cell wall material). The rotation of these periplasmic flagella against the cell wall leads to deformations of the cell cylinder, and these deformations exert force against the external environment. The bacterium transitions between the arthropod vector (Ixodid ticks) and mammalian host. This enzootic cycle requires the bacterium to interact with extremely different environments. For example, spirochetes must be able to colonize the tick midgut, and then migrate out of the midgut into the hemocoel. Once in the hemocoel, the bacterium must navigate towards the salivary glands, attach to the acinar surface, penetrate the basal lamina, and enter the salivary ducts. B. burgdorferi is then inoculated into the skin of its mammalian host where it must translocate through the extracellular matrix in order to access small vessels which provide portals for dissemination through the blood. To invade joints and other host tissue, the cells must adhere to the endothelium of blood vessels in target organs and penetrate through them. The unique motility and morphology of B. burgdorferi are presumed to drive many of these processes and are, therefore, considered to be major factors in the pathogenesis of Lyme disease. The principal hypothesis of this proposal is that the internal mechanism driving the motility of B. burgdorferi (i.e., flagellar rotation) is largely unchanged when the spirochete moves between the tick and the mammalian host, but its strategy for motility is substantially different due to differences in the interactions with the different host tissues. This reasoning suggests that the shape; physical parameters, such as the stiffness of the flagella and cell cylinder; and the internal mechanism driving motility have evolved to allow for directed migration in these diverse environments. Therefore, this research will first experimentally test the predictions of a mathematical model developed by the PI that describes the shape and motility of B. burgdorferi using antibiotic-treated cells and genetic manipulations to alter the stiffnesses of the cell wall and flagella. Next, the motility of B. burgdorferi will be examined in gelatin matrices, in order to quantify motility through a controllable model system that mimics the ECM. Finally, modeling and time-lapse fluorescence microscopy will be used to determine the mechanisms of motility in epithelial cell layers, and in the tick and mouse. These aims are directed toward moving the current understanding of motility in non-physiological liquid and/or methycellulose solutions to biologically realistic environments in which spirochetes adhere to cells or ECM in order to complete their enzootic cycle and accomplish their parasitic strategy. PUBLIC HEALTH RELEVANCE: The research described in this proposal will determine the biophysical mechanisms that are involved in the transmission to and invasion of the host that occurs in Lyme disease. Specifically, a quantitative model of the pathogen-host interactions during the progression of Lyme disease will be developed and experimentally tested, which will provide a detailed understanding of the infection process and may lead to novel therapeutic methods.
描述(由申请人提供):这是由Spirochete Borrelia Burgdorferi引起的,是美国最常见的tick虫传播疾病。如果未经治疗,莱姆病可能会导致多种并发症通常涉及心脏,关节或神经系统。人们普遍认为,伯格多菲尔(B. burgdorferi)的运动对于莱姆病的发病机理至关重要。 B. Burgdorferi通过旋转螺旋丝(鞭毛)(鞭毛)游泳,该螺旋丝(鞭毛)位于周质空间(外膜和细胞壁材料之间的空间)。这些周围鞭毛对细胞壁的旋转导致细胞缸的变形,这些变形对外部环境发挥了作用。节肢动物载体(ixodid ticks)和哺乳动物宿主之间的细菌过渡。这个enzootic循环要求细菌与极度不同的环境相互作用。例如,螺旋体必须能够定居tick虫,然后从中肠迁移到血液中。一旦进入血液,细菌必须朝着唾液腺附着在腺泡表面,穿透基底层,然后进入唾液管。然后将B. burgdorferi接种到其哺乳动物宿主的皮肤中,必须在那里通过细胞外基质转运,以获取小血管,以提供通过血液传播的门户。要入侵关节和其他宿主组织,细胞必须粘附在目标器官中血管的内皮并穿透它们。假定B. burgdorferi的独特运动和形态可以推动许多此类过程,因此被认为是莱姆病发病机理的主要因素。该提议的主要假设是,当螺旋体在tick虫和哺乳动物宿主之间移动时,驱动B. burgdorferi(即鞭毛旋转)运动的内部机制在很大程度上没有变化,但是由于与不同宿主组织的相互作用差异,其运动策略大不相同。这种推理表明形状。物理参数,例如鞭毛和细胞缸的刚度;并且内部机制驱动运动已经发展为允许在这些不同的环境中进行定向迁移。因此,这项研究将首先在实验中测试由PI开发的数学模型的预测,该数学模型使用抗生素处理的细胞和遗传操作来描述B. burgdorferi的形状和运动,以改变细胞壁和鞭毛的刚度。接下来,将在明胶矩阵中检查B. burgdorferi的运动性,以通过模拟ECM的可控模型系统来量化运动。最后,建模和延时荧光显微镜将用于确定上皮细胞层以及tick和小鼠中运动的机制。这些目的是针对非生理液体和/或甲基纤维素溶液在生物学上现实的环境中的当前理解,在这些环境中,螺旋体遵循细胞或ECM,以完成其enzootic循环并完成其寄生策略。 公共卫生相关性:该提案中描述的研究将确定莱姆病传播和入侵宿主的生物物理机制。具体而言,将开发和实验测试在莱姆病进展过程中病原体宿主相互作用的定量模型,这将对感染过程提供详细的理解,并可能导致新的治疗方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CHARLES W WOLGEMUTH其他文献

CHARLES W WOLGEMUTH的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CHARLES W WOLGEMUTH', 18)}}的其他基金

Biophysics of the morphology and motility of Borrelia burgdorferi in diverse envi
不同环境下伯氏疏螺旋体形态和运动的生物物理学
  • 批准号:
    8548356
  • 财政年份:
    2004
  • 资助金额:
    $ 34.84万
  • 项目类别:
Biophysics of the morphology and motility of Borrelia burgdorferi in diverse envi
不同环境下伯氏疏螺旋体形态和运动的生物物理学
  • 批准号:
    8136313
  • 财政年份:
    2004
  • 资助金额:
    $ 34.84万
  • 项目类别:
An Elastic Model of Spirochete Morphology and Motility
螺旋体形态和运动的弹性模型
  • 批准号:
    7229013
  • 财政年份:
    2004
  • 资助金额:
    $ 34.84万
  • 项目类别:
Biophysics of the morphology and motility of Borrelia burgdorferi in diverse envi
不同环境下伯氏疏螺旋体形态和运动的生物物理学
  • 批准号:
    8325472
  • 财政年份:
    2004
  • 资助金额:
    $ 34.84万
  • 项目类别:
Elastic Model of Spirochete Morphology and Motility
螺旋体形态和运动的弹性模型
  • 批准号:
    6828744
  • 财政年份:
    2004
  • 资助金额:
    $ 34.84万
  • 项目类别:
An Elastic Model of Spirochete Morphology and Motility
螺旋体形态和运动的弹性模型
  • 批准号:
    6891288
  • 财政年份:
    2004
  • 资助金额:
    $ 34.84万
  • 项目类别:
An Elastic Model of Spirochete Morphology and Motility
螺旋体形态和运动的弹性模型
  • 批准号:
    7061331
  • 财政年份:
    2004
  • 资助金额:
    $ 34.84万
  • 项目类别:

相似国自然基金

动脉粥样硬化发生中CAPN2影响内皮粘连的机制研究
  • 批准号:
    82000254
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
层粘连蛋白调控巨噬细胞和脂肪基质细胞影响肥胖脂肪组织重塑的机制
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    300 万元
  • 项目类别:
层粘连蛋白受体第272位苏氨酸影响猪瘟病毒感染的分子机制
  • 批准号:
    31902264
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
大黄-桃仁介导AhR通路影响Th17/Treg和肠道菌群平衡改善肠粘膜屏障功能防治粘连性肠梗阻的机制研究
  • 批准号:
    81804098
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
保留双层肌膜的功能性肌肉移植中S1P/S1PR1轴调节巨噬细胞迁移及分化对移植肌肉粘连与功能的影响
  • 批准号:
    81871787
  • 批准年份:
    2018
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目

相似海外基金

The Role of Bone Sialoprotein in Modulating Periodontal Development and Repair
骨唾液酸蛋白在调节牙周发育和修复中的作用
  • 批准号:
    10752141
  • 财政年份:
    2023
  • 资助金额:
    $ 34.84万
  • 项目类别:
2023 Elastin, Elastic Fibers and Microfibrils Gordon Research Conference and Gordon Research Seminar
2023年弹性蛋白、弹性纤维和微纤维戈登研究会议和戈登研究研讨会
  • 批准号:
    10754079
  • 财政年份:
    2023
  • 资助金额:
    $ 34.84万
  • 项目类别:
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
  • 批准号:
    10736860
  • 财政年份:
    2023
  • 资助金额:
    $ 34.84万
  • 项目类别:
Phosphatase-dependent regulation of desmosome intercellular junctions
桥粒细胞间连接的磷酸酶依赖性调节
  • 批准号:
    10677182
  • 财政年份:
    2023
  • 资助金额:
    $ 34.84万
  • 项目类别:
Deciphering the role of mitochondrial/autophagy dysfunction in regulating inflammatory processes during AMD pathogenesis
破译线粒体/自噬功能障碍在 AMD 发病机制中调节炎症过程中的作用
  • 批准号:
    10664118
  • 财政年份:
    2023
  • 资助金额:
    $ 34.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了