Structure and Function of Drosophila NF-kappaB Signaling Pathways
果蝇 NF-κB 信号通路的结构和功能
基本信息
- 批准号:7921230
- 负责人:
- 金额:$ 7.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:Adaptor Signaling ProteinAddressAnimalsArchitectureArthritisArtsBacteriaBindingBinding ProteinsBinding SitesBiochemicalBiological AssayCactaceaeCaspaseCell Culture SystemCell Surface ReceptorsComplexDNADataDeath DomainDevelopmentDiseaseDorsalDrosophila genomeDrosophila genusElementsEmbryoEventEvolutionGene ExpressionGene Expression RegulationGenomeGenomicsGoalsHealthHeart DiseasesHomologous GeneHumanImmuneImmune responseImmune systemImmunityIn VitroInfectionInsectaInvestigationKnowledgeMalignant NeoplasmsMammalsMediatingMediator of activation proteinMethodsModelingMolecularMolecular GeneticsMonitorNF-kappa BNatural ImmunityNatureNuclearNuclear TranslocationOrganismPathway interactionsPatternPhospho-Specific AntibodiesPhosphorylationPhosphotransferasesPlantsPositioning AttributeProtein KinaseProteinsRNA InterferenceRegulationReporterReporter GenesResearchRoleSignal PathwaySignal TransductionSignal Transduction PathwaySiteSite-Directed MutagenesisSpecificityStructureTechnologyTestingTrans-ActivatorsTransgenesTransgenic OrganismsTubeantimicrobialantimicrobial peptidebaseembryonic cell cultureflyfungusgenetic regulatory proteingenome sequencinghuman TYRP1 proteininhibitor/antagonistinsightinterestmicrobialmutantpathogenpredictive modelingprogramsprotein protein interactionpublic health relevanceresearch studyresponsetranscription factor
项目摘要
DESCRIPTION (provided by applicant): The long-term goal of this research is to understand signaling pathways that regulate programs of innate immune gene expression by controlling the subcellular localization of regulatory proteins. In the fruit fly Drosophila, signal transduction by the cell surface receptor Toll promotes nuclear translocation of transcription factors governing both innate immunity and embryonic patterning. Pathway function in innate immune responses has been widely conserved, with homologous pathways inducing antimicrobial defenses in both plants and mammals. Infection of flies with particular sets of pathogens activates either the Toll or the Imd signaling pathway. The targets of Toll signaling are Dif and Dorsal, which are NF-?B related transcription factors, and the inhibitory protein Cactus, an I?B homolog. The target of the Imd pathway is a third NF-?B protein, Relish, which is activated by a conserved caspase and by the fly counterpart of the IKK complex. The fact that these pathways have been characterized at both the genetic and molecular level and can be assayed in whole fly and cell culture systems makes them particularly amenable to experimental investigation. It is now possible, therefore, to address fundamental questions about the mechanisms for signal transduction, the coordination of Toll and Imd pathway function, the evolution of pathway architecture, and the overall program for regulation of immune responses. The focus of the proposed research will be to acquire and integrate knowledge of signal transduction mechanism into the context of overall regulation and organization of humoral innate immune defenses. In carrying out these studies, we will take advantage of discoveries regarding the orthologous relationships between fly and mammalian Toll pathway components. We will use RNA interference technology and phosphospecific antibodies to identify the physiologically relevant Cactus kinase. We will also carry out in vitro binding assays and site-directed mutagenesis to test a model for conservation of protein-protein interactions in the Toll pathway. Using an approach based on a state-of-the-art method for transgenic studies in Drosophila, we will test hypotheses regarding the role of binding site number in delineating pathway functions. A combination of site-directed mutagenesis and reporter gene studies will be exploited to refine our knowledge of a cis-regulatory site for immune regulation and to provide the basis for identification of the trans-acting factors. Lastly, we will combine functional studies, expression data, and sequence comparisons across twelve Drosophila genomes to develop a predictive model for innate immune gene regulation. Given the conserved nature of the signaling pathways, the results of the proposed research should be of substantial interest with regard to innate immunity pathways and defenses in a broad range of organisms.
PUBLIC HEALTH RELEVANCE Humans and other animals rely on innate immune defenses to recognize and respond to infection by a range of microbial pathogens. Furthermore, abnormal function of innate immune systems contributes to a range of human disorders, including arthritis, heart disease, and cancer. By studying the mechanism and regulation of such response pathways, we will therefore obtain knowledge of broad and substantial significance to human health.
描述(由申请人提供):这项研究的长期目标是通过控制调节蛋白的亚细胞定位来了解来调节先天免疫基因表达程序的信号通路。在果蝇果蝇中,细胞表面受体TOLL的信号转导促进了控制先天免疫和胚胎模式的转录因子的核转运。先天免疫反应中的途径功能已广泛保守,同源途径诱导植物和哺乳动物的抗菌防御。特定病原体集的苍蝇感染激活了通行费或IMD信号通路。通行信号传导的目标是DIF和背侧,哪些是NF-?B相关的转录因子,以及抑制性蛋白仙人掌,A I?B同源物。 IMD途径的靶标是第三nf- b蛋白,津津有味,它被保守的caspase和IKK复合物的飞行对应物激活。这些途径在遗传和分子水平上都被表征了,并且可以在整个苍蝇和细胞培养系统中进行测定,使它们特别适合实验研究。因此,现在有可能解决有关信号转导机制的基本问题,收费和IMD途径功能的协调,途径架构的演变以及免疫反应调节的整体程序。拟议的研究的重点将是将信号转导机制的知识获取和整合到整体调节和组织体液先天免疫防御措施的背景下。在进行这些研究时,我们将利用有关Fly和哺乳动物收费途径成分之间的直系关系的发现。我们将使用RNA干扰技术和磷酸化抗体来识别与生理相关的仙人掌激酶。我们还将进行体外结合测定法和位于位置的诱变,以测试一个模型,以保存收费途径中蛋白质 - 蛋白质相互作用。使用基于果蝇中转基因研究的最先进方法的方法,我们将检验有关结合位点数量在描述途径功能中的作用的假设。将利用位置定向的诱变和报告基因研究的结合,以完善我们对SIS调节部位的了解,以进行免疫调节,并为鉴定跨性别因子提供基础。最后,我们将结合十二个果蝇基因组的功能研究,表达数据和序列比较,以开发一个先天免疫基因调节的预测模型。鉴于信号通路的保守性质,拟议的研究结果应在整个生物体中具有先天免疫途径和防御方面具有重大兴趣。
公共卫生相关性人类和其他动物依靠先天的免疫防御措施来识别并应对一系列微生物病原体的感染。此外,先天免疫系统的异常功能有助于一系列人类疾病,包括关节炎,心脏病和癌症。通过研究这种反应途径的机制和调节,我们将获得对人类健康的广泛和实质性意义的知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Alexander Wasserman其他文献
Steven Alexander Wasserman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Alexander Wasserman', 18)}}的其他基金
PHOSPHORYLATION IN A DEVELOPMENTAL SIGNALING PATHWAY
发育信号通路中的磷酸化
- 批准号:
6180427 - 财政年份:1994
- 资助金额:
$ 7.73万 - 项目类别:
PHOSPHORYLATION IN A DEVELOPMENTAL SIGNALING PATHWAY
发育信号通路中的磷酸化
- 批准号:
6018990 - 财政年份:1994
- 资助金额:
$ 7.73万 - 项目类别:
PHOSPHORYLATION IN A DEVELOPMENT SIGNALING PATHWAY
发育信号通路中的磷酸化
- 批准号:
2188455 - 财政年份:1994
- 资助金额:
$ 7.73万 - 项目类别:
PHOSPHORYLATION IN A DEVELOPMENTAL SIGNALING PATHWAY
发育信号通路中的磷酸化
- 批准号:
2690071 - 财政年份:1994
- 资助金额:
$ 7.73万 - 项目类别:
Structure and Function of Drosophila NF-kappaB Signaling Pathways
果蝇 NF-κB 信号通路的结构和功能
- 批准号:
9312820 - 财政年份:1994
- 资助金额:
$ 7.73万 - 项目类别:
Structure and Function of Drosophila NF-kappaB Signaling Pathways
果蝇 NF-κB 信号通路的结构和功能
- 批准号:
7529407 - 财政年份:1994
- 资助金额:
$ 7.73万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Regulation and feedback in Fat/Dachsous signaling
Fat/Dachsous 信号传导的调节和反馈
- 批准号:
10716713 - 财政年份:2023
- 资助金额:
$ 7.73万 - 项目类别:
Spherical Nucleic Acid nano-architectures as first-in-class cGAS agonists for the immunotherapeutic treatment of Glioblastoma.
球形核酸纳米结构作为一流的 cGAS 激动剂,用于胶质母细胞瘤的免疫治疗。
- 批准号:
10539146 - 财政年份:2022
- 资助金额:
$ 7.73万 - 项目类别:
Alterations of leukocyte integrin signaling leading to diabetes and autoimmunity
白细胞整合素信号的改变导致糖尿病和自身免疫
- 批准号:
10502136 - 财政年份:2022
- 资助金额:
$ 7.73万 - 项目类别:
Spherical Nucleic Acid nano-architectures as first-in-class cGAS agonists for the immunotherapeutic treatment of Glioblastoma.
球形核酸纳米结构作为一流的 cGAS 激动剂,用于胶质母细胞瘤的免疫治疗。
- 批准号:
10709540 - 财政年份:2022
- 资助金额:
$ 7.73万 - 项目类别:
Cellular and molecular analysis of startle modulation
惊吓调节的细胞和分子分析
- 批准号:
10553665 - 财政年份:2021
- 资助金额:
$ 7.73万 - 项目类别: