MOSAIC: Imaging Human Tissue State Dynamics In Vivo
MOSAIC:体内人体组织状态动态成像
基本信息
- 批准号:10729423
- 负责人:
- 金额:$ 34.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-18 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAutomobile DrivingBiological MarkersBiopsyBrainBrain NeoplasmsCell modelCellsClinicalDiagnosisDiseaseDisease ProgressionEpidermal Growth Factor ReceptorFacility AccessesGenomic SegmentGlioblastomaGliomaGuidelinesHumanImageImage AnalysisImmuneImmune TargetingImmune responseImmunocompetentImmunooncologyImmunotherapyInflammationInflammatoryMagnetic Resonance ImagingMalignant - descriptorMathematicsMeasuresMediatingModelingMolecularMonitorNatureOncologyOutcomePatient-Focused OutcomesPatientsPhenotypePhysiologicalPopulationPrimary Brain NeoplasmsProliferatingRecurrenceResidual NeoplasmResourcesSamplingSignal TransductionStudy modelsSystems AnalysisTherapeuticTimeTissue ModelTissue SampleTissuesTreatment ProtocolsWorkangiogenesisclinical imagingcohortcosthuman imaginghuman tissueimaging facilitiesimmunotherapy clinical trialsimprovedin vivoindividual patientindividualized medicineneoplastic cellnoninvasive diagnosisnovelpatient safetyphysical propertypredictive modelingquantitative imagingradiomicsresponsestandard of caretooltreatment responsetumortumor behavior
项目摘要
SUMMARY: PROJECT 2: IMAGING THE DYNAMIC TISSUE STATE IN PATIENTS IN VIVO
With a dismal median survival of 16 months, glioblastoma (GBM) is the most common malignant primary brain
tumor within adult patients. Response to the standard-of-care (SOC) is widely variable across patients.
Identifying optimal targeted treatments traditionally relies on tissue sampling to identify patient-relevant targets.
Yet, tissue sampling has many severe limitations and costs (time, money, and facility access), and ultimately
provides only limited scope both spatially and temporally thus always leaving behind residual tumor cells that
have not been sampled. Multi-parametric magnetic resonance imaging (MRI) measures an array of
complementary physiologic biomarkers that correspond with diverse tumor phenotypes (e.g., proliferation,
inflammation, angiogenesis), and it serves as the clinical mainstay for monitoring therapeutic response and
disease progression. As tumor cell signaling may be mediated through interactions (i.e.,“cross-talk”) with
surrounding non-tumoral cells in the regional microenvironment, there is a critical need to define the degree to
which this cross-talk influences local tissue state, phenotypic expression, and disease
progression. Understanding these associations should help refine the clinical interpretations of imaging
phenotypes to improve guidelines for non-invasive diagnosis and disease monitoring. There is an urgent need
for image-based radiomics tools that can 1) predict which patients will respond to a given treatment and 2) can
observe/track that response over time.
Overall Hypothesis: Tissue states, represented as combinations of cellular constituents and phenotypes, can be
resolved on clinical imaging to a level sufficient to identify transitions in these states with and without treatments
in individual patients in vivo.
Our two aims in this project investigate this hypothesis in two separate settings, Aim 1) Standard of Care, Aim
2) Immunotherapy. In these aims, we will characterize the landscape of phenotypic states, build image-based
models to predict tissue state from images, investigate how predicted tumor states correspond with outcomes,
quantify dynamics of states from pre- to post-therapy, and finally build mechanistic models to understand the
critical driving differences in the flow of cells in local phenotype state space leading to the overall tumor state.
摘要:项目 2:患者体内动态组织状态成像
胶质母细胞瘤 (GBM) 是最常见的原发性脑恶性肿瘤,中位生存期仅为 16 个月。
成年患者对标准治疗 (SOC) 的反应在不同患者之间存在很大差异。
传统上,确定有针对性的最佳治疗方法依赖于组织采样来确定与患者相关的目标。
然而,组织采样有许多严重的限制和成本(时间、金钱和设施使用),最终
仅提供有限的空间和时间范围,因此总是留下残留的肿瘤细胞
尚未进行多参数磁共振成像 (MRI) 测量。
与不同肿瘤表型相对应的互补生理生物标志物(例如增殖、
炎症、血管生成),它是监测治疗反应和
由于肿瘤细胞信号传导可能通过与疾病的相互作用(即“串扰”)来介导。
在区域微环境中围绕非肿瘤细胞,迫切需要定义其程度
这种串扰影响局部组织状态、表型表达和疾病
了解这些关联应有助于完善影像学的临床解释
迫切需要改进非侵入性诊断和疾病监测的表型指南。
基于图像的放射组学工具可以 1) 预测哪些患者会对给定治疗做出反应,2) 可以
随着时间的推移观察/跟踪该反应。
总体假设:以细胞成分和表型的组合表示的组织状态可以是
临床成像的分辨率足以识别这些状态的转变(有或没有治疗)
在个体患者体内。
我们在这个项目中的两个目标在两个不同的环境中研究这个假设,目标 1) 护理标准,目标
2)免疫治疗在这些目标中,我们将描述表型状态的特征,建立基于图像的方法。
从图像预测组织状态的模型,研究预测的肿瘤状态与结果的对应关系,
量化从治疗前到治疗后的状态动态,最后建立机制模型来理解
局部表型状态空间中细胞流动的关键驱动差异导致整体肿瘤状态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristin R Swanson其他文献
Biologically-informed deep neural networks provide quantitative assessment of intratumoral heterogeneity in post-treatment glioblastoma
生物信息深度神经网络提供胶质母细胞瘤治疗后瘤内异质性的定量评估
- DOI:
10.1101/2022.12.20.521086 - 发表时间:
2024-01-23 - 期刊:
- 影响因子:0
- 作者:
Hairong Wang;Michael G. Argenziano;H. Yoon;D. Boyett;A. Save;P.D. Petridis;William M Savage;P. Jackson;A. Hawkins;Nhan L Tran;Lel;S. Hu;Osama Al Dalahmah;Jeffrey N. Bruce;J. Grinb;Kristin R Swanson;P. Canoll;Jing Li - 通讯作者:
Jing Li
Knowledge-Informed Machine Learning for Cancer Diagnosis and Prognosis: A review
用于癌症诊断和预后的知识型机器学习:综述
- DOI:
10.48550/arxiv.2401.06406 - 发表时间:
2024-01-12 - 期刊:
- 影响因子:0
- 作者:
Lingchao Mao;Hairong Wang;Lel;S. Hu;Nhan L Tran;Peter D Canoll;Kristin R Swanson;Jing Li - 通讯作者:
Jing Li
Complementary role of mathematical modeling in preclinical glioblastoma: differentiating poor drug delivery from drug insensitivity
数学模型在临床前胶质母细胞瘤中的补充作用:区分药物输送不良和药物不敏感
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
J. Urcuyo;S. Massey;A. Hawkins;B. Marin;D. Burgenske;J. Sarkaria;Kristin R Swanson - 通讯作者:
Kristin R Swanson
Response to "Tumor cells in search for glutamate: an alternative explanation for increased invasiveness of IDH1 mutant gliomas".
对“肿瘤细胞寻找谷氨酸:IDH1 突变神经胶质瘤侵袭性增加的另一种解释”的回应。
- DOI:
10.1093/neuonc/nou290 - 发表时间:
2014 - 期刊:
- 影响因子:15.9
- 作者:
Andrew D. Trister;Jacob Scott;Russell Rockne;Kevin Yagle;S. Johnston;A. Hawkins;A. Baldock;Kristin R Swanson - 通讯作者:
Kristin R Swanson
Uncertainty Quantification in Radiogenomics: EGFR Amplification in Glioblastoma
放射基因组学中的不确定性定量:胶质母细胞瘤中的 EGFR 扩增
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Leland S. Hu;Lujia Wang;A. Hawkins;Jenny M. Eschbacher;K. Singleton;P. Jackson;K. Clark;Christopher P. Sereduk;Sen Peng;Panwen Wang;Junwen Wang;L. Baxter;Kris A. Smith;Gina L. Mazza;Ashley M. Stokes;B. Bendok;Richard S. Zimmerman;C. Krishna;Alyx Porter;M. Mrugala;J. Hoxworth;Teresa Wu;Nhan L Tran;Kristin R Swanson;Jing Li - 通讯作者:
Jing Li
Kristin R Swanson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristin R Swanson', 18)}}的其他基金
Project 1: Modeling the Interface between Non-invasive Imaging and Drug Distribution
项目 1:对无创成像和药物分配之间的接口进行建模
- 批准号:
9187652 - 财政年份:2016
- 资助金额:
$ 34.29万 - 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
- 批准号:
8605773 - 财政年份:2012
- 资助金额:
$ 34.29万 - 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
- 批准号:
8515534 - 财政年份:2009
- 资助金额:
$ 34.29万 - 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
- 批准号:
7905757 - 财政年份:2009
- 资助金额:
$ 34.29万 - 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
- 批准号:
8123111 - 财政年份:2009
- 资助金额:
$ 34.29万 - 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
- 批准号:
8309373 - 财政年份:2009
- 资助金额:
$ 34.29万 - 项目类别:
E=mc2: Environment-Driven Mathematical Modeling for Clinical Cancer Imaging
E=mc2:环境驱动的临床癌症成像数学模型
- 批准号:
8555189 - 财政年份:2009
- 资助金额:
$ 34.29万 - 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
- 批准号:
7730125 - 财政年份:2009
- 资助金额:
$ 34.29万 - 项目类别:
相似国自然基金
基于驾驶人行为理解的人机共驾型智能汽车驾驶权分配机制研究
- 批准号:52302494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人机共驾汽车驾驶风险分析及控制权智能交互机理
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
定性与定量分析跟驰行驶中汽车驾驶员情感-行为交互作用机理
- 批准号:71901134
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
兼顾效率与能效的城市道路智能网联汽车驾驶行为优化及实证研究
- 批准号:71871028
- 批准年份:2018
- 资助金额:46.0 万元
- 项目类别:面上项目
汽车驾驶员疲劳的心理生理检测及神经机制
- 批准号:31771225
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Development of a SYF2 antisense oligonucleotide treatment for ALS and FTD
开发治疗 ALS 和 FTD 的 SYF2 反义寡核苷酸
- 批准号:
10547625 - 财政年份:2023
- 资助金额:
$ 34.29万 - 项目类别:
Chronic Pain and Risk of Alzheimer's-Related Neurodegeneration
慢性疼痛和阿尔茨海默病相关神经变性的风险
- 批准号:
10644253 - 财政年份:2023
- 资助金额:
$ 34.29万 - 项目类别:
Characterizing the functional genomic atlas of human placenta and unveiling the prenatal programming of early-life development
表征人类胎盘的功能基因组图谱并揭示早期生命发育的产前编程
- 批准号:
10580294 - 财政年份:2023
- 资助金额:
$ 34.29万 - 项目类别:
Artificial Intelligence for Dynamic, individualized CPR guidance: AID CPR
人工智能提供动态、个性化的心肺复苏指导:AID CPR
- 批准号:
10644648 - 财政年份:2023
- 资助金额:
$ 34.29万 - 项目类别:
Using Digital Signals from Credit Data for Early Detection of Alzheimer's Disease and Related Dementias
使用信用数据中的数字信号早期检测阿尔茨海默病和相关痴呆症
- 批准号:
10590416 - 财政年份:2023
- 资助金额:
$ 34.29万 - 项目类别: