Metabolic regulatory mechanisms essential for Human Cytomegalovirus replication
人类巨细胞病毒复制所必需的代谢调节机制
基本信息
- 批准号:7899310
- 负责人:
- 金额:$ 34.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-01 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:5&apos-AMP-activated protein kinase6-Phosphofructo-2-kinase6-PhosphofructokinaseAcetyl-CoA CarboxylaseAcquired Immunodeficiency SyndromeAddressAdverse effectsAffectAnabolismAttenuatedCancer PatientCellsCytomegalovirusCytomegalovirus InfectionsDependenceDevelopmentDiseaseElderlyEmployee StrikesEnzymesGenesGenetic TranscriptionGlycolysisHomeostasisImmunosuppressive AgentsInfectionInstitutesLegal patentLifeLiquid ChromatographyLive BirthMeasuresMediatingMessenger RNAMetabolicMetabolic ActivationMetabolismMethodologyNervous System TraumaNeuraxisNewborn InfantPathway interactionsPatientsPopulationPositioning AttributeProductionProteinsProto-Oncogene Proteins c-aktRegulationRelianceResearchRoleTP53 geneTestingTherapeuticTranscriptional ActivationTransplant RecipientsViralViral GenesViral PhysiologyVirionVirusVirus DiseasesWorkaminoglycoside N1-acetyltransferasebasebody systemchemotherapycombatdrug resistant virusfatty acid biosynthesisimmunosuppressednovelpathogenprogramspublic health relevancetandem mass spectrometry
项目摘要
DESCRIPTION (provided by applicant): It has been known for decades that viruses induce dramatic changes to host-cell metabolism and that these changes are important for viral replication. The mechanisms involved, however, have largely remained obscure. A major challenge in dissecting the mechanisms of viral metabolic manipulation has been the technical difficulty associated with measuring diverse metabolic activities in live cells. We have developed a liquid chromatography-tandem mass spectrometry-based (LC-MS/MS) methodology to measure global metabolic activities in live cells. We propose that elucidation of these viral mechanisms will prove fertile ground for the development of novel anti-viral therapeutics. Our results indicate that three metabolic regulatory activities are required for high-titer HCMV replication; AMP-activated kinase (AMPK) and phosphofructokinase-1 (PFK1), both of which regulate glycolytic flux, and acetyl-CoA carboxylase (ACC1), which regulates fatty acid biosynthesis. In uninfected cells, activated AMPK directly inhibits ACC1 activity and thereby, fatty acid biosynthesis. We find that HCMV blocks this regulatory control, maintaining increased ACC1 activity despite activated AMPK. This results in a dramatic activation of both glycolysis and fatty acid biosynthesis. To explore these mechanisms, we will: (I) Elucidate the mechanisms of HCMV-induced AMPK activation and its role in HCMV replication; (II) Elucidate the mechanisms of HCMV- induced ACC1 activation; and (III) Elucidate the mechanisms of HCMV-induced PFK1 activation and how they contribute to viral replication. Through elucidating the viral mechanisms leading to the activation of these metabolic activities we will identify novel anti-viral targets to combat HCMV-associated disease and further explore viral manipulation of these fundamental host-cell pathways.
PUBLIC HEALTH RELEVANCE: Human Cytomegalovirus (HCMV) is a widespread opportunistic pathogen that can cause severe disease in various immunosuppressed populations including the elderly, cancer patients receiving immunosuppressive chemotherapy, transplant recipients, and AIDS patients. HCMV is also the leading cause of congenital viral infection, occurring in 1-2% of all live births, which can result in multiple organ system abnormalities with central nervous system damage occurring in the majority of symptomatic newborns. Long term use of current anti-HCMV therapeutics in patients leads to toxic side effects and has resulted in the emergence of drug-resistant viral strains, highlighting the need for additional anti-HCMV therapeutics. Our proposed research aims to elucidate the mechanisms HCMV utilizes to drive the biosynthesis of virion components. Elucidating these mechanisms will present targets to therapeutically block viral replication and attenuate HCMV-associated disease.
描述(由申请人提供):几十年来,人们已经知道病毒会引起宿主细胞代谢的巨大变化,并且这些变化对于病毒复制很重要。然而,所涉及的机制在很大程度上仍然不清楚。剖析病毒代谢操纵机制的一个主要挑战是与测量活细胞中不同代谢活动相关的技术困难。我们开发了一种基于液相色谱-串联质谱 (LC-MS/MS) 的方法来测量活细胞中的整体代谢活动。我们认为,阐明这些病毒机制将为开发新型抗病毒疗法提供肥沃的土壤。我们的结果表明,高滴度 HCMV 复制需要三种代谢调节活性: AMP 激活激酶 (AMPK) 和磷酸果糖激酶-1 (PFK1) 均调节糖酵解通量,乙酰辅酶 A 羧化酶 (ACC1) 调节脂肪酸生物合成。在未感染的细胞中,激活的 AMPK 直接抑制 ACC1 活性,从而抑制脂肪酸生物合成。我们发现 HCMV 阻断了这种调节控制,尽管 AMPK 被激活,但仍维持 ACC1 活性的增加。这导致糖酵解和脂肪酸生物合成的显着激活。为了探索这些机制,我们将:(一)阐明HCMV诱导AMPK激活的机制及其在HCMV复制中的作用; (二)阐明HCMV诱导ACC1激活的机制; (III) 阐明 HCMV 诱导 PFK1 激活的机制以及它们如何促进病毒复制。通过阐明导致这些代谢活动激活的病毒机制,我们将确定新的抗病毒靶点来对抗 HCMV 相关疾病,并进一步探索病毒对这些基本宿主细胞途径的操纵。
公共卫生相关性:人类巨细胞病毒 (HCMV) 是一种广泛传播的机会性病原体,可在各种免疫抑制人群中引起严重疾病,包括老年人、接受免疫抑制化疗的癌症患者、移植受者和艾滋病患者。 HCMV 也是先天性病毒感染的主要原因,占所有活产婴儿的 1-2%,可导致大多数有症状新生儿出现多器官系统异常和中枢神经系统损伤。患者长期使用现有的抗 HCMV 疗法会导致毒副作用,并导致耐药病毒株的出现,这突出表明需要额外的抗 HCMV 疗法。我们提出的研究旨在阐明 HCMV 用于驱动病毒体成分生物合成的机制。阐明这些机制将提出治疗性阻断病毒复制和减轻 HCMV 相关疾病的靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSHUA C MUNGER其他文献
JOSHUA C MUNGER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSHUA C MUNGER', 18)}}的其他基金
Metabolic modulation by the HCMV UL38 gene
HCMV UL38 基因的代谢调节
- 批准号:
10327734 - 财政年份:2020
- 资助金额:
$ 34.46万 - 项目类别:
Metabolic modulation by the HCMV UL38 gene
HCMV UL38 基因的代谢调节
- 批准号:
10553210 - 财政年份:2020
- 资助金额:
$ 34.46万 - 项目类别:
Metabolic modulation by the HCMV UL38 gene
HCMV UL38 基因的代谢调节
- 批准号:
10199231 - 财政年份:2020
- 资助金额:
$ 34.46万 - 项目类别:
Metabolic modulation by the HCMV UL38 gene
HCMV UL38 基因的代谢调节
- 批准号:
10112826 - 财政年份:2020
- 资助金额:
$ 34.46万 - 项目类别:
HCMV-mediated repurposing of AMPK & CaMKK signaling for productive infection
HCMV 介导的 AMPK 的再利用
- 批准号:
9765147 - 财政年份:2016
- 资助金额:
$ 34.46万 - 项目类别:
Metabolic regulatory mechanisms essential for Human Cytomegalovirus replication
人类巨细胞病毒复制所必需的代谢调节机制
- 批准号:
8459347 - 财政年份:2010
- 资助金额:
$ 34.46万 - 项目类别:
Metabolic regulatory mechanisms essential for Human Cytomegalovirus replication
人类巨细胞病毒复制所必需的代谢调节机制
- 批准号:
8064343 - 财政年份:2010
- 资助金额:
$ 34.46万 - 项目类别:
Metabolic regulatory mechanisms essential for Human Cytomegalovirus replication
人类巨细胞病毒复制所必需的代谢调节机制
- 批准号:
8259814 - 财政年份:2010
- 资助金额:
$ 34.46万 - 项目类别:
相似国自然基金
AMPK通过调控Smurf1的SUMO化抑制创伤性异位骨化的研究
- 批准号:31900852
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
血管微环境中内皮细胞AMPK抑制心肌纤维化的功能与机制研究
- 批准号:81800273
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于AMPK-FXR-BSEP介导的齐墩果酸所致胆汁淤积性肝损伤作用机制研究
- 批准号:81760678
- 批准年份:2017
- 资助金额:35.0 万元
- 项目类别:地区科学基金项目
基于AMPK信号通路研究菝葜黄酮调控脂类代谢分子机制
- 批准号:81760157
- 批准年份:2017
- 资助金额:32.0 万元
- 项目类别:地区科学基金项目
PRKAG2基因自发新突变K485E引起心脏电生理异常的机制研究
- 批准号:81400259
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Hepatic mitochondrial function control of high-fat diet-induced weight gain
肝线粒体功能控制高脂饮食引起的体重增加
- 批准号:
9751299 - 财政年份:2017
- 资助金额:
$ 34.46万 - 项目类别:
Hepatic mitochondrial function control of high-fat diet-induced weight gain
肝线粒体功能控制高脂饮食引起的体重增加
- 批准号:
10242724 - 财政年份:2017
- 资助金额:
$ 34.46万 - 项目类别:
Hepatic mitochondrial function control of high-fat diet-induced weight gain
肝线粒体功能控制高脂饮食引起的体重增加
- 批准号:
10450906 - 财政年份:2017
- 资助金额:
$ 34.46万 - 项目类别:
Metabolic regulatory mechanisms essential for Human Cytomegalovirus replication
人类巨细胞病毒复制所必需的代谢调节机制
- 批准号:
8459347 - 财政年份:2010
- 资助金额:
$ 34.46万 - 项目类别:
Metabolic regulatory mechanisms essential for Human Cytomegalovirus replication
人类巨细胞病毒复制所必需的代谢调节机制
- 批准号:
8064343 - 财政年份:2010
- 资助金额:
$ 34.46万 - 项目类别: