Engineering Surface Coatings for Localized Delivery of Therapeutic Extracellular Vesicles
用于治疗性细胞外囊泡局部递送的工程表面涂层
基本信息
- 批准号:10719257
- 负责人:
- 金额:$ 17.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-07 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdhesionsAdsorptionAnimal ModelArchitectureAtomic Force MicroscopyBiocompatible MaterialsBiological AssayBolus InfusionBone RegenerationCell AdhesionCell CommunicationCell secretionCellsChargeClinicalConfocal MicroscopyDevelopmentElectrostaticsEngineeringEnvironmentEnzyme-Linked Immunosorbent AssayEquilibriumExtracellular MatrixExtracellular Matrix ProteinsFlow CytometryFluorescenceFluorescence MicroscopyGoalsHydrogelsImmunohistochemistryImplantIn VitroLabelLateralLigandsLipidsLiver RegenerationManualsMediatingMesenchymalModelingMorphologyMuscleMyocardial InfarctionNatural regenerationNucleic AcidsOrganOsteogenesisPalpationPathologyPathway interactionsPlayPolymersPolysaccharidesPre-Clinical ModelProliferatingPropertyProteinsQuartzRattusRegenerative MedicineResearchResearch ProposalsReverse Transcriptase Polymerase Chain ReactionRoleScanning Electron MicroscopySignal TransductionSodium ChlorideSpinal FusionStainsStromal CellsSurfaceSystemTendon structureTestingTherapeuticTissue EngineeringTissuesVesicleWestern BlottingWorkabsorptionbonecartilage regenerationcell typeclinical applicationclinical translationdiabetic wound healingextracellular vesiclesimmunoregulationimprovedimproved outcomein vivoin vivo regenerationinhibitorinsightinterestlight scatteringmechanical propertiesmedical implantnanoparticlenanoscalepreclinical studyprotein biomarkersradiological imagingreceptorregenerative therapyrepairedscaffoldscreeningstemsurface coatingtherapeutically effectivetissue regenerationtissue repairtomographyuptakezeta potential
项目摘要
PROJECT SUMMARY
The PI’s long-term research goal is to engineer the cell-material interface for applications in tissue engineering,
regenerative medicine, and medical implants, with a particular focus on bone regeneration. Extracellular vesicle
(EV) - based therapies have been of increasing interest in the past decade to treat a variety of pathologies.
Although EV delivery from various carrier systems has been shown to induce tissue regeneration in preclinical
models, there remains a critical gap in efficient and controlled delivery of therapeutic EVs. This proposal aims to
engineer a surface coating system that promotes localized EV delivery for tissue engineering and regenerative
medicine applications. The central hypothesis underlying this research is that surface-mediated EV delivery
modulates cellular uptake and signaling in comparison to bolus or systemic EV delivery.
The specific research objectives of this proposal are to: (1) Investigate the roles of electrostatic and receptor-
ligand interactions in the adsorption and release of EVs to/from surface coatings; (2) Investigate the effects of
surface-based EV delivery in comparison to bolus EV delivery; and, (3) Demonstrate that EV delivery from
surface-coated tissue engineering scaffolds improves tissue regeneration in vivo in a rat spinal fusion model. EVs
will be derived from mesenchymal stem/stromal cells (MSCs) and characterized for size, surface charge, and
protein markers. Interactions between MSC-EVs and surface coatings composed of ECM proteins,
polysaccharides and charged polymers will be analyzed under various conditions (pH, R-L inhibitors, salt
screening) via fluorescence labeling studies and quartz crystal microbalance with dissipation analyses. EV uptake
efficiency and endocytic pathways will be analyzed in several cell types (MSCs, HUVECs, HEK293s) in
comparison to bolus EV delivery via fluorescence microscopy and flow cytometry (+/- endocytic pathway
inhibitors). Cellular adhesion, proliferation, and angiogenic differentiation and immunomodulation will also be
analyzed in vitro. In vivo bone forming capacity and fusion efficacy of EVs delivered from surface-coated
scaffolds will be evaluated in the rat posterolateral lumbar fusion model via manual palpation, radiographic
scoring, volumetric microcomputed tomography (µCT) and immunohistochemistry, in comparison to uncoated
scaffolds and bolus delivery. Results from this work will significantly advance understanding of how material
properties and surface-based EV delivery impact cellular EV uptake, adhesion, proliferation and differentiation.
Additionally, this proposal will enable development of effective therapeutic EV surface-coatings that can tailored
for a wide variety of scaffolds and/or implants for many different therapies, including cartilage regeneration,
diabetic wound healing, cardiac infarction, and tendon and muscle repair.
项目概要
PI 的长期研究目标是设计细胞-材料界面以应用于组织工程、
再生医学和医疗植入物,特别关注骨再生。
在过去的十年中,基于 EV 的疗法在治疗各种病理方面引起了越来越多的兴趣。
尽管在临床前研究中,各种载体系统的 EV 递送已被证明可以诱导组织再生
模型中,在有效和受控的治疗性 EV 输送方面仍然存在严重差距。该提案旨在
设计一种表面涂层系统,促进组织工程和再生的局部 EV 输送
这项研究的核心假设是表面介导的 EV 传递。
与推注或全身 EV 输送相比,可调节细胞摄取和信号传导。
本提案的具体研究目标是:(1)研究静电和受体的作用
(2) 研究配体相互作用对表面涂层吸附和释放EV的影响;
基于表面的 EV 输送与推注 EV 输送的比较;以及 (3) 证明 EV 输送来自
表面涂层的组织工程支架可改善大鼠脊柱融合模型的体内组织再生。
将源自间充质干细胞/基质细胞 (MSC),并对其大小、表面电荷和特征进行表征
蛋白质标记物 MSC-EV 和由 ECM 蛋白质组成的表面涂层之间的相互作用,
多糖和带电聚合物将在各种条件下进行分析(pH、R-L 抑制剂、盐
筛选)通过荧光标记研究和石英晶体微天平与耗散分析。
将在多种细胞类型(MSC、HUVEC、HEK293)中分析效率和内吞途径
通过荧光显微镜和流式细胞术与推注 EV 递送进行比较(+/- 内吞途径
细胞粘附、增殖、血管生成分化和免疫调节也将受到影响。
体外分析了表面涂层递送的 EV 的体内骨形成能力和融合功效。
将通过手动触诊、放射照相在大鼠后外侧腰椎融合模型中评估支架
与未涂层相比,评分、体积微计算机断层扫描 (μCT) 和免疫组织化学
这项工作的结果将显着促进对材料如何进行的理解。
特性和基于表面的 EV 传递影响细胞 EV 的摄取、粘附、增殖和分化。
此外,该提案将有助于开发有效的治疗性电动汽车表面涂层,该涂层可以定制
用于多种不同疗法的支架和/或植入物,包括软骨再生,
糖尿病伤口愈合、心肌梗塞以及肌腱和肌肉修复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christina Andrea Holmes其他文献
Christina Andrea Holmes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
宫腔粘连子宫内膜NK细胞异常破坏间质稳态致内膜纤维化的机制研究
- 批准号:82371641
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于“胞宫藏泻”理论探讨补肾养营活血方和HuMSCs调节ERS介导的细胞焦亡重塑粘连宫腔内膜容受态的研究
- 批准号:82305302
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
组胺通过调控Th1/Th2平衡促进宫腔粘连的机制研究
- 批准号:82360298
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
SPP1+M2巨噬细胞促进宫腔粘连内膜纤维化的机制和干预研究
- 批准号:82371636
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
人胎盘水凝胶类器官贴片重建子宫内膜对重度宫腔粘连的作用及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
相似海外基金
NIH SBIR Phase I: UNCD as Bio-Inert Interface for Anti-Thrombogenicity Applicati
NIH SBIR 第一阶段:UNCD 作为抗血栓形成应用的生物惰性界面
- 批准号:
8125069 - 财政年份:2011
- 资助金额:
$ 17.06万 - 项目类别:
Nylon-3 Copolymers as Synthetic Cell-Adhesive Moieties for Tissue Engineering
Nylon-3 共聚物作为组织工程的合成细胞粘附部分
- 批准号:
8240031 - 财政年份:2011
- 资助金额:
$ 17.06万 - 项目类别:
Nylon-3 Copolymers as Synthetic Cell-Adhesive Moieties for Tissue Engineering
Nylon-3 共聚物作为组织工程的合成细胞粘附部分
- 批准号:
8090829 - 财政年份:2011
- 资助金额:
$ 17.06万 - 项目类别:
Cell Adhesion and Guidance Motifs for Cardiac Grafts
心脏移植物的细胞粘附和引导基序
- 批准号:
7231452 - 财政年份:2006
- 资助金额:
$ 17.06万 - 项目类别: