Closing the loop with an automatic referral population and summarization system
通过自动转介人群和汇总系统形成闭环
基本信息
- 批准号:10720778
- 负责人:
- 金额:$ 71.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAgeAlgorithmsAutomated AbstractingCaringClinicalCommunicationContinuity of Patient CareDataData ScientistDisparateElectronic Health RecordElectronicsEnsureGenerationsGuidelinesHeadacheHeadache DisordersHealthHealthcare SystemsInformaticsKnowledgeMethodsModelingNatural Language ProcessingOutpatientsPatient CarePatient-Focused OutcomesPatientsPersonsPhysiciansPopulationPrimary CareProcessProviderPublic HealthQuality of CareRaceResearchSocioeconomic StatusSpecialistStrategic PlanningSystemTechnologyTestingTextTranslationsUnited StatesUnited States National Library of MedicineVisitcare outcomescommon symptomdeep learningelectronic health dataelectronic health informationempowermentevidence baseevidence based guidelinesexperiencehealth information technologyheterogenous dataimprovedinnovationinterdisciplinary approachinteroperabilitymultimodalitynovelprimary care providersuccessuser centered design
项目摘要
In the United States, more than a third of patients are referred to a specialist each year, and specialist visits
constitute more than half of outpatient visits. Even though all physicians highly value communication between
primary care providers (PCPs) and specialists, both PCPs and specialists cite the lack of effective information
transfer as one of the most significant problems in the referral process. Therefore, it is critical to investigate a
new method to improve communication during care transitions. With their ubiquitous use, it is recognized that
electronic health records (EHRs) should ensure a seamless flow of information across healthcare systems to
improve the referral process. But, a lack of accessible and relevant information in the referral process remains a
pressing problem. Recently, emerging deep learning (DL) and natural language processing (NLP) methods have
been successfully applied in extracting pertinent information from EHRs and generating text summarization to
improve care quality and patient outcomes. However, existing technologies cannot be applied to process
heterogeneous data from EHRs and create high-quality clinical summaries for communicating a reason for
referral. Responding to PA-20-185, this project will develop and validate a novel informatics framework to collect
and synthesize longitudinal, multimodal EHR data for automatic referral form generation and summarization.
While the referring provider and specialist can be any type of provider for any condition, the focus in this
application has been on headache for primary care, because it is an extremely common symptom and affects
people of all ages, races, and socioeconomic statuses. More importantly, relevant information needed for
headache referrals has been defined in local and national evidence-based practice guidelines. Therefore, a
health information technology solution to make these data accessible will empower communication between
PCPs and specialists, which can improve the care of millions of patients suffering from disabling headache
disorders. Based on our preliminary data and our experience with an interdisciplinary team of data scientists and
physicians, we plan to execute specific aims: 1) Convert text-based guidelines into a standards-based algorithm
for electronic implementation; 2) develop models to automatically populate data from EHR and clinical notes to
fill the referral form; 3) create a framework to summarize the longitudinal clinical notes to fill out the referral form;
and 4) develop and validate the headache referral system with a user-centered design approach. The research
proposed in this project is novel and innovative because it will produce and rigorously test new solutions to
improve the communication between health professonals to ensure that safe, high-quality care is provided and
care continuity is maintained. The success of this project will (1) fill important gaps in our knowledge of
understanding the types of information exchange that will optimize patient care during transitions and (2) provide
evidence-based solutions to enable the exchange.
在美国,每年有超过三分之一的患者被转诊至专科医生处,并且专科医生就诊
占门诊就诊人数的一半以上。尽管所有医生都高度重视之间的沟通
初级保健提供者 (PCP) 和专家,PCP 和专家都表示缺乏有效信息
转介是转介过程中最重要的问题之一。因此,调查一个
改善护理过渡期间沟通的新方法。随着它们的普遍使用,人们认识到
电子健康记录 (EHR) 应确保医疗保健系统之间的信息无缝流动
改进转介流程。但是,在转介过程中缺乏可访问的相关信息仍然是一个问题
紧迫的问题。最近,新兴的深度学习(DL)和自然语言处理(NLP)方法已经
已成功应用于从电子病历中提取相关信息并生成文本摘要
提高护理质量和患者治疗效果。但现有技术无法应用于加工
来自 EHR 的异质数据并创建高质量的临床摘要以传达原因
转介。为了响应 PA-20-185,该项目将开发并验证一个新颖的信息学框架来收集
合成纵向、多模式 EHR 数据,用于自动转诊表格生成和总结。
虽然转介提供者和专家可以是针对任何情况的任何类型的提供者,但重点在于
应用已用于初级保健的头痛,因为这是一种极其常见的症状,并且影响
所有年龄、种族和社会经济地位的人。更重要的是,需要相关信息
地方和国家循证实践指南已对头痛转诊进行了定义。因此,一个
使这些数据可访问的卫生信息技术解决方案将增强人们之间的沟通
PCP 和专家可以改善数百万患有致残性头痛的患者的护理
失调。根据我们的初步数据以及我们与数据科学家跨学科团队合作的经验,
对于医生来说,我们计划执行特定目标:1)将基于文本的指南转换为基于标准的算法
用于电子实施; 2) 开发模型自动填充 EHR 和临床记录中的数据
填写推荐表; 3) 创建一个框架来总结纵向临床记录以填写转诊表;
4) 采用以用户为中心的设计方法开发和验证头痛转诊系统。研究
该项目中提出的方案新颖且具有创新性,因为它将产生并严格测试新的解决方案
改善卫生专业人员之间的沟通,以确保提供安全、高质量的护理
保持护理的连续性。该项目的成功将(1)填补我们在以下方面的知识空白:
了解可在过渡期间优化患者护理的信息交换类型,以及 (2) 提供
基于证据的解决方案促进交流。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yifan Peng其他文献
Yifan Peng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yifan Peng', 18)}}的其他基金
Achieving Model Fairness on Automatic Primary Open-angle Glaucoma Screening
实现自动原发性开角型青光眼筛查的模型公平性
- 批准号:
10726928 - 财政年份:2023
- 资助金额:
$ 71.2万 - 项目类别:
A framework to enhance radiology structured report by invoking NLP and DL: Models and Applications
通过调用 NLP 和 DL 来增强放射学结构化报告的框架:模型和应用
- 批准号:
10458538 - 财政年份:2020
- 资助金额:
$ 71.2万 - 项目类别:
A framework to enhance radiology structured report by invoking NLP and DL: Models and Applications
通过调用 NLP 和 DL 来增强放射学结构化报告的框架:模型和应用
- 批准号:
10224953 - 财政年份:2020
- 资助金额:
$ 71.2万 - 项目类别:
A framework to enhance radiology structured report by invoking NLP and DL: Models and Applications
通过调用 NLP 和 DL 来增强放射学结构化报告的框架:模型和应用
- 批准号:
10197509 - 财政年份:2020
- 资助金额:
$ 71.2万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向年龄相关性黄斑变性诊断的迁移学习算法研究
- 批准号:62371328
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于信息年龄的自组网分布式及时信息调度算法研究
- 批准号:62102232
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
异质动态网络上年龄结构传染病模型及算法研究
- 批准号:11701348
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
视网膜年龄相关性黄斑病变OCT图像的三维分割算法研究
- 批准号:61401294
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Sex-differences in HIV persistence and Immune Dynamics during Reproductive Aging
生殖衰老过程中艾滋病毒持久性和免疫动态的性别差异
- 批准号:
10838316 - 财政年份:2023
- 资助金额:
$ 71.2万 - 项目类别:
CRCNS: Deep Learning to Discover Neurovascular Disruptions in Alzheimer's Disease
CRCNS:深度学习发现阿尔茨海默病的神经血管破坏
- 批准号:
10831259 - 财政年份:2023
- 资助金额:
$ 71.2万 - 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 71.2万 - 项目类别:
Individual Multimodal Pathway Statistics for Predicting Treatment Response in Late-life Depression
用于预测晚年抑郁症治疗反应的个体多模式通路统计
- 批准号:
10722921 - 财政年份:2023
- 资助金额:
$ 71.2万 - 项目类别:
Eye as a Window into Brain Health in Pediatric Hydrocephalus
眼睛是了解小儿脑积水大脑健康的窗口
- 批准号:
10659299 - 财政年份:2023
- 资助金额:
$ 71.2万 - 项目类别: