Nanowired human isogenic cardiac organoids to treat acute myocardial ischemia/reperfusion injuries
纳米线人类同基因心脏类器官治疗急性心肌缺血/再灌注损伤
基本信息
- 批准号:10721208
- 负责人:
- 金额:$ 37.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcuteAddressAllogenicAnimal ModelAnimalsAttentionBovine Serum AlbuminCardiacCardiac MyocytesCardiovascular DiseasesCause of DeathCell SurvivalCellsChemicalsClinicalClinical TrialsDataDevelopmentDissociationElectric ConductivityEndothelial CellsEndotheliumEngraftmentFamily suidaeFemaleFibroblastsGoalsHarvestHeartHeart InjuriesHumanImmuneImplantInjectionsIschemiaMajor Histocompatibility ComplexMethodsModelingMyocardial InfarctionMyocardial Reperfusion InjuryMyocardiumOrganoidsPathologicPatientsPrognosisProteinsRattusRecovery of FunctionRegenerative capacityReperfusion InjuryReperfusion TherapyResearchRiskSiliconStromal CellsStructureSystemTranslatingTransplantationTreatment EfficacyVariantVascularizationcardiac repaircatalystclinical developmentclinical translationfabricationfunctional improvementfunctional restorationhuman pluripotent stem cellimplantationin vivoinnovationmalenanowirepercutaneous coronary interventionporcine modelpublic health relevance
项目摘要
Project Summary: In the U.S., there are more than 735,000 myocardial infarctions (MI) each year. While
percutaneous coronary intervention (PCI) has significantly reduced acute adverse repones, the long-term
prognosis for post-ischemia/reperfusion (I/R) patients remains poor. Due to the limited regenerative capacity of
human hearts, human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have received significant
attention due to their proven capacity to restore contractile function upon transplantation to injured hearts in
various mammalian models, leading to multiple ongoing clinical trials. However, the current transplantation
approach mainly relies on dissociated hPSC-CMs, leading to low cell survival, moderate functional improvement,
arrhythmogenic risk, and poor scalability. To address these challenges, our lab developed nanowired, pre-
vascularized human cardiac organoids composed of hPSC-CMs, human primary cardiac fibroblasts,
endothelial cells, stromal cells, and electrically conductive silicon nanowires (e-SiNWs). Endothelial cells are
used to induce vasculature formation within the organoids, and e-SiNWs are added to create an electrically
conductive microenvironment to facilitate hPSC-CM contractile development and their electrical integration with
the host myocardium. Our preliminary in vivo data showed that nanowired organoids illustrated robust hPSC-
CM engraftment and superior functional recovery. The major barriers in their clinical translation include: 1) the
use of animal proteins in the cell and organoid culture and 2) the lack of functional benefit demonstration in a
large animal model. Replacing human primary cells with isogenic hPSC-derived cells for organoid fabrication
would reduce batch-to-batch variations and enhance immune compatibility through Major Histocompatibility
Complex (MHC) matching hPSC donors with human recipients. In addition, while the current hPSC-CM
implantation strategy has been focused on intramyocardial injection, developing an effective approach for
intracoronary delivery of the organoids will accelerate their clinical translation. The goal of this proposal is to
develop clinical-grade hPSC cardiac organoids and demonstrate their functional benefits with a large animal
model to generate enabling data for IND submission. The central hypothesis of this proposal is the nanowired
isogenic hPSC cardiac organoids provide a scalable system to both efficiently and effectively implant hPSC-CMs
for cardiac repair. The proposal is innovative in that we will 1) derive isogenic hPSC-derived cells in xeno-free,
chemically defined conditions to develop clinical-grade cardiac organoids for implantation and 2) leverage the
size and the endothelial lumen-like structures in the organoids to develop an effective intracoronary delivery
strategy. Accordingly, we will pursue the following 2 aims: 1) Fabricate and characterize nanowired human
cardiac organoids using isogenic cardiac cells derived from hPSCs in xeno-free, chemically defined conditions,
and 2) Determine the therapeutic efficacy of the nanowired isogenic hPSC cardiac organoids with a porcine I/R
(ischemia/reperfusion) model.
项目摘要:在美国,每年有超过 735,000 例心肌梗塞 (MI)。尽管
经皮冠状动脉介入治疗(PCI)显着减少了急性不良反应,长期来看
缺血/再灌注(I/R)患者的预后仍然很差。由于再生能力有限
人类心脏、人类多能干细胞衍生的心肌细胞(hPSC-CM)已获得显着的
由于它们被证明能够在移植到受伤的心脏后恢复收缩功能而受到关注
各种哺乳动物模型,导致多项正在进行的临床试验。但目前的移植
该方法主要依赖于解离的 hPSC-CM,导致细胞存活率低、功能改善中等,
致心律失常风险,可扩展性差。为了应对这些挑战,我们的实验室开发了纳米线、预
由 hPSC-CM、人原代心脏成纤维细胞组成的血管化人心脏类器官,
内皮细胞、基质细胞和导电硅纳米线 (e-SiNW)。内皮细胞是
用于诱导类器官内脉管系统的形成,并添加 e-SiNW 以创建电学
导电微环境促进 hPSC-CM 收缩发育及其与
宿主心肌。我们的初步体内数据表明,纳米线类器官具有强大的 hPSC-
CM 植入和卓越的功能恢复。其临床转化的主要障碍包括:1)
在细胞和类器官培养中使用动物蛋白,2) 缺乏功能性益处论证
大型动物模型。用同基因 hPSC 衍生细胞替代人类原代细胞用于类器官制造
将减少批次间的差异并通过主要组织相容性增强免疫相容性
hPSC 供体与人类受体相匹配的复合物 (MHC)。此外,虽然目前的 hPSC-CM
植入策略一直侧重于心肌内注射,开发了一种有效的方法
类器官的冠状动脉内递送将加速其临床转化。该提案的目标是
开发临床级 hPSC 心脏类器官并通过大型动物展示其功能优势
模型来生成 IND 提交的支持数据。该提案的中心假设是纳米线
同基因 hPSC 心脏类器官提供了一个可扩展的系统,可以高效且有效地植入 hPSC-CM
用于心脏修复。该提案具有创新性,因为我们将 1) 在无异种物质的情况下衍生同基因 hPSC 衍生细胞,
化学定义的条件来开发用于植入的临床级心脏类器官,2)利用
类器官的大小和内皮管腔样结构,以开发有效的冠状动脉内输送
战略。因此,我们将追求以下两个目标:1)制造纳米线人体并对其进行表征
在无异种物质、化学成分确定的条件下使用源自 hPSC 的同基因心脏细胞制作心脏类器官,
2) 确定纳米线同基因 hPSC 心脏类器官与猪 I/R 的治疗效果
(缺血/再灌注)模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Mei其他文献
Ying Mei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Mei', 18)}}的其他基金
Nanowired humam cardiac organoid derived exosomes for heart repair
纳米线人类心脏类器官衍生的外泌体用于心脏修复
- 批准号:
10639040 - 财政年份:2023
- 资助金额:
$ 37.99万 - 项目类别:
Human organoid model for COVID-19 myocarditis
COVID-19 心肌炎的人体类器官模型
- 批准号:
10746509 - 财政年份:2023
- 资助金额:
$ 37.99万 - 项目类别:
Nanowired human cardiac spheroids for heart repair
用于心脏修复的纳米线人类心脏球体
- 批准号:
9384348 - 财政年份:2017
- 资助金额:
$ 37.99万 - 项目类别:
Polymer Microarrays for Stem Cell Cardiac Differentiation
用于干细胞心脏分化的聚合物微阵列
- 批准号:
8742736 - 财政年份:2014
- 资助金额:
$ 37.99万 - 项目类别:
Polymer Microarrays for Stem Cell Cardiac Differentiation
用于干细胞心脏分化的聚合物微阵列
- 批准号:
9069879 - 财政年份:
- 资助金额:
$ 37.99万 - 项目类别:
相似国自然基金
剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
- 批准号:82370157
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
IKZF1-N159Y/S热点突变在急性白血病中的致病机制研究
- 批准号:82300168
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NMNAT1上调B7-H3介导急性早幼粒细胞白血病免疫逃逸的作用和机制研究
- 批准号:82300169
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
支链氨基酸转氨酶1在核心结合因子急性髓细胞白血病中的异常激活与促进白血病发生的分子机制研究
- 批准号:82370178
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
SRSF3/LRP5/Wnt信号通路在急性淋巴细胞白血病中的作用及机制研究
- 批准号:82370128
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Targeting P21 positive senescent cells for alleviating TMJ degeneration
靶向 P21 阳性衰老细胞减轻 TMJ 变性
- 批准号:
10892710 - 财政年份:2023
- 资助金额:
$ 37.99万 - 项目类别:
Evaluating the impacts of sea level rise on migration and wellbeing in coastal communities
评估海平面上升对沿海社区移民和福祉的影响
- 批准号:
10723570 - 财政年份:2023
- 资助金额:
$ 37.99万 - 项目类别:
Mechanisms underlying mustard gas-induced conjunctival injury and use of lipid mediators as medical countermeasures
芥子气引起的结膜损伤的机制以及脂质介质作为医疗对策的使用
- 批准号:
10882060 - 财政年份:2023
- 资助金额:
$ 37.99万 - 项目类别:
3/4-American Consortium of Early Liver Transplantation-Prospective Alcohol-associated liver disease Cohort Evaluation (ACCELERATE-PACE)
3/4-美国早期肝移植联盟-前瞻性酒精相关性肝病队列评估(ACCELERATE-PACE)
- 批准号:
10711001 - 财政年份:2023
- 资助金额:
$ 37.99万 - 项目类别: