Dynamic control of mitochondrial function by the protein unfoldase CLPX
蛋白质解折叠酶 CLPX 对线粒体功能的动态控制
基本信息
- 批准号:10717543
- 负责人:
- 金额:$ 31.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-10 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:Adaptor Signaling ProteinAffectBindingBinding SitesBiochemicalBiological AssayCell Culture TechniquesCellsClinical TrialsCoenzyme AComplexCoupledDataDefectDetectionDiseaseDrug TargetingElectronsEnvironmentEnzymesEquilibriumEukaryotic CellFamily memberFatty AcidsFeedbackGoalsGrowth and Development functionHematological DiseaseHemeHeme IronHumanHuman ActivitiesKineticsLicensingLigandsLigaseLinkMalignant NeoplasmsMass Spectrum AnalysisMeasurementMeasuresMethodsMitochondriaMitochondrial ProteinsModelingMolecularMolecular ConformationMolecular TargetMusMutationN-terminalNatureNegative FindingOutcomeOxygenPathway interactionsPeptide HydrolasesPeptidesPhenotypePhysiologyProcessProductivityProtein EngineeringProtein FamilyProtein TruncationProteinsProteomeProteomicsRepressionRoentgen RaysRoleShapesSignal TransductionSiteSpectrum AnalysisStructureSystemTestingTimeVariantbasecofactordisulfide bondheme aheme biosynthesisin vitro Assaynervous system disorderprogramsprotein functionreconstitutionresponsetherapeutic targettherapy developmenttooltumor progressionunfoldase
项目摘要
Abstract
Mitochondria must maintain and regulate their proteome to meet the varied needs of the cell throughout growth
and development. Mitochondria employ several AAA+ family protein unfoldases as an important tool in
accomplishing this control. We here focus on the AAA+ protein unfoldase CLPX, which can act on its own or
unfold proteins for coupled degradation by its partner protease CLPP. Loss of CLPX is lethal in mice,
mutations in CLPX and CLPP cause mitochondriopathies, and CLPXP drives cancer progression and is
targeted by drugs in clinical trials in a diverse range of cancers. These phenotypes indicate the crucial
contributions of CLPX and CLPP to mitochondrial physiology. The overall goal of this project is to reveal the
mechanisms by which CLPX selects substrates at the appropriate time, thus tailoring their function to
mitochondrial and cellular needs. Proteomic studies have linked CLPX to multiple likely substrates that control
core mitochondrial processes, although only a few have been further characterized, and mechanisms for
conditional substrate selection remain largely undetermined. One of the best-characterized functions for CLPX
is to regulate heme biosynthesis, a crucial mitochondrial function, by acting on the first enzyme in this pathway,
ALA synthase (ALAS). CLPX activates ALAS by partial unfolding to facilitate cofactor incorporation. When
heme levels are high, CLPX (with its partner protease CLPP) also appears to inactivate ALAS by complete
unfolding and degradation, signaled by a heme-binding site in ALAS. In preliminary results, we have
biochemically reconstituted heme-induced degradation of ALAS by CLPXP, confirming the direct nature of this
activity. We additionally discovered that degradation strongly depends on a heme-sensitive adaptor protein.
The project proposed here will (1) elucidate the mechanism by which heme drives assembly and licensing of a
degradation complex for ALAS, using our reconstituted system with equilibrium-binding and kinetic analyses of
complex assembly and ALAS degradation in parallel with observations in cells. (2) We will determine how
heme is directly sensed within the complex using spectroscopic and structural methods and test how the
heme-responsiveness of this system is tuned to suit different cellular programs. (3) We will determine how a
heme-sensitive adaptor in the CLPXP degradation complex tunes substrate selection by CLPX beyond ALAS,
using a candidate-based approach and an unbiased proteomic approach in parallel. This study will reveal
fundamental mechanisms for the conditional control of mitochondrial functions and will provide detailed
molecular targets for the development of therapy for multiple diseases with a basis in mitochondrial function,
including disorders of heme biosynthesis and cancer.
抽象的
线粒体必须维持和调节其蛋白质组,以满足细胞在整个生长过程中的各种需求
和发展。线粒体使用多种 AAA+ 家族蛋白解折叠酶作为重要工具
来完成这个控制。我们在这里重点关注 AAA+ 蛋白解折叠酶 CLPX,它可以单独发挥作用,也可以
展开蛋白质并被其伙伴蛋白酶 CLPP 耦合降解。 CLPX 的缺失对小鼠来说是致命的,
CLPX 和 CLPP 的突变会导致线粒体病,而 CLPXP 会促进癌症进展,并且
在多种癌症的临床试验中被药物靶向。这些表型表明了关键的
CLPX 和 CLPP 对线粒体生理学的贡献。该项目的总体目标是揭示
CLPX 在适当的时间选择底物的机制,从而调整其功能
线粒体和细胞的需求。蛋白质组学研究已将 CLPX 与多种可能控制的底物联系起来
核心线粒体过程,尽管只有少数得到了进一步的表征,以及其机制
条件底物选择在很大程度上仍未确定。 CLPX 最具特色的功能之一
是通过作用于该途径中的第一个酶来调节血红素生物合成,这是一种重要的线粒体功能,
ALA 合酶 (ALAS)。 CLPX 通过部分解折叠来激活 ALAS,以促进辅因子掺入。什么时候
血红素水平很高,CLPX(及其伙伴蛋白酶 CLPP)似乎也会通过完全灭活 ALAS
展开和降解,由 ALAS 中的血红素结合位点发出信号。在初步结果中,我们有
CLPXP 生化重建血红素诱导的 ALAS 降解,证实了这种现象的直接性质
活动。我们还发现降解强烈依赖于血红素敏感的衔接蛋白。
这里提出的项目将(1)阐明血红素驱动组装和许可的机制
ALAS 的降解复合物,使用我们的重构系统进行平衡结合和动力学分析
复杂的组装和 ALAS 降解与细胞中的观察同时进行。 (2) 我们将决定如何
使用光谱和结构方法直接感测复合物内的血红素,并测试血红素如何
该系统的血红素响应性经过调整以适应不同的细胞程序。 (3) 我们将决定如何
CLPXP 降解复合物中的血红素敏感接头可调节 CLPX 超越 ALAS 的底物选择,
并行使用基于候选的方法和公正的蛋白质组学方法。这项研究将揭示
线粒体功能条件控制的基本机制,并将提供详细的
开发以线粒体功能为基础的多种疾病治疗的分子靶标,
包括血红素生物合成障碍和癌症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julia R. Kardon其他文献
Julia R. Kardon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julia R. Kardon', 18)}}的其他基金
Regulation of Heme Synthesis and Mitochondrial Physiology by the ClpX Unfoldase
ClpX 解折叠酶对血红素合成和线粒体生理学的调节
- 批准号:
8548918 - 财政年份:2012
- 资助金额:
$ 31.47万 - 项目类别:
Regulation of Heme Synthesis and Mitochondrial Physiology by the ClpX Unfoldase
ClpX 解折叠酶对血红素合成和线粒体生理学的调节
- 批准号:
8310476 - 财政年份:2012
- 资助金额:
$ 31.47万 - 项目类别:
Regulation of Heme Synthesis and Mitochondrial Physiology by the ClpX Unfoldase
ClpX 解折叠酶对血红素合成和线粒体生理学的调节
- 批准号:
8725651 - 财政年份:2012
- 资助金额:
$ 31.47万 - 项目类别:
相似国自然基金
基于lncRNA NONHSAT042241/hnRNP D/β-catenin轴探讨雷公藤衍生物(LLDT-8)对类风湿关节炎滑膜成纤维细胞功能影响及机制研究
- 批准号:82304988
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
针刺手法和参数对针刺效应启动的影响及其机制
- 批准号:82305416
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二仙汤影响肾上腺皮质-髓质激素分泌及调控下丘脑温度感受器以缓解“天癸竭”潮热的研究
- 批准号:82374307
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
固定翼海空跨域航行器出水稳定性与流体动力载荷影响机制
- 批准号:52371327
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
经济制裁对跨国企业海外研发网络建构的影响:基于被制裁企业的视角
- 批准号:72302155
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
YloC, a new ribonuclease of Bacillus subtilis
YloC,枯草芽孢杆菌的新型核糖核酸酶
- 批准号:
10736779 - 财政年份:2023
- 资助金额:
$ 31.47万 - 项目类别:
Function and Mechanism of the Intercalated Disc Protein XinB in Cardiomyocyte Proliferation and Cardiac Regeneration
闰盘蛋白XinB在心肌细胞增殖和心脏再生中的作用及机制
- 批准号:
10681642 - 财政年份:2023
- 资助金额:
$ 31.47万 - 项目类别:
Increasing the Complexity of Microtubule-based transport: Cargo adaptors and Hitchhiking on Vesicles.
增加基于微管的运输的复杂性:货物适配器和囊泡搭便车。
- 批准号:
10713449 - 财政年份:2023
- 资助金额:
$ 31.47万 - 项目类别:
Architecture of inhibitory G protein signaling in the hippocampus
海马抑制性 G 蛋白信号传导的结构
- 批准号:
10659438 - 财政年份:2023
- 资助金额:
$ 31.47万 - 项目类别:
Effects of binge ethanol on neuroinflammation and neurodegeneration with high fat diets
暴饮乙醇对高脂肪饮食引起的神经炎症和神经变性的影响
- 批准号:
10668068 - 财政年份:2023
- 资助金额:
$ 31.47万 - 项目类别: