Advancing Hemiarthroplasty: Predicting in vivo performance of cartilage bearing systems through benchtop and ex vivo testing.

推进半关节成形术:通过台式和离体测试预测软骨支撑系统的体内性能。

基本信息

  • 批准号:
    10719393
  • 负责人:
  • 金额:
    $ 73.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2028-07-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT The ultimate goal of this research program is to advance hemiarthroplasty performance. Hemiarthroplasty involves replacement of one of the articular joint surfaces with an artificial bearing surface. It offers a clear benefit in patients with localized cartilage damage, preserving the healthy bone and cartilage in the joint to maximize future treatment options. And hemiarthroplasty is inherent in the replacement of individually diseased carpal (wrist) or tarsal (foot) bones, which have multiple articulations with neighboring bones. Currently, hemiarthroplasty outcomes vary dramatically by the joint involved and by the type of bearing surface used to articulate with the opposing cartilage. Failure most often occurs by degeneration of the opposing articular surface. A critical challenge in advancing hemiarthroplasty performance is the ability to identify bearing surfaces that will maintain healthy cartilage. There are numerous candidate biomaterials that might be suitable for use as hemiarthroplasty bearing surfaces, including metals, ceramics, and polymers, as well as specialized coatings, such as titanium nitride and pyrolytic carbon. However, the performance of these materials has been mixed, due in large part to the lack of standardized and validated testing methodologies. Accordingly, the specific objective of this project is to develop a model where benchtop and ex vivo testing can predict the cartilage response to hemiarthroplasty bearing system wear in a fit-for-purpose large animal model. This goal will be achieved by completing three specific aims. In the first, we will characterize the material and mechanical properties of eight candidate hemiarthroplasty bearing surfaces (2 metals, 4 polymers, 1 ceramic, and 1 pyrolytic carbon) using standard benchtop mechanical tests (roughness, wettability, modulus, hardness, and wear testing against cortical bone). In the second, we will characterize the cartilage bearing performance of each of the candidate biomaterials by wear testing them against bovine cartilage plugs in a joint motion-simulating biotribometer, using proteoglycan/glycosaminoglycan (PG/GAG) and hydroxyproline as measures of cartilage matrix degradation and live/dead assays as a measure of cell damage. In the third, we will test four of the 8 materials from Aims 1 & 2 as bearing surfaces in a novel unicompartmental tibial hemiarthroplasty model in the Yucatan minipig, measuring cartilage damage (macro- and microscopic), synovial inflammation, cartilage thickness, and osteophyte bone formation at 52 weeks. And finally, we will develop a statistical model where the data from Aims 1 and 2 can be used to predict the outcome in Aim 3. The work outlined in this proposal will yield a model where benchtop and ex vivo testing can predict the cartilage response to hemiarthroplasty. This project will provide a crucial tool needed to accelerate the design, development, and FDA clearance of new hemiarthroplasty bearing surfaces, resulting in a significant benefit for millions of patients afflicted with degenerative joint disease.
抽象的 该研究计划的最终目标是提高半关节置换术的性能。半关节置换术 涉及用人造轴承表面替换其中一个关节表面。它提供了明显的好处 对于局部软骨损伤的患者,保留关节中的健康骨骼和软骨,以最大限度地发挥作用 未来的治疗选择。半关节置换术是替换个别患病腕骨所固有的 (手腕)或跗骨(足)骨,与邻近的骨头有多个关节。现在, 半关节置换术的结果因所涉及的关节以及用于支撑的支撑表面的类型而有很大差异 与相对的软骨形成关节。失败最常见的原因是对侧关节退化 表面。提高半关节置换术性能的一个关键挑战是识别支撑表面的能力 这将保持健康的软骨。有许多候选生物材料可能适合用作 半关节成形术轴承表面,包括金属、陶瓷和聚合物,以及专门的涂层, 例如氮化钛和热解碳。然而,这些材料的性能参差不齐,因为 很大程度上是由于缺乏标准化和经过验证的测试方法。据此,具体目标 该项目的目的是开发一个模型,通过台式和离体测试可以预测软骨反应 半关节成形术轴承系统在适合用途的大型动物模型中的磨损。这一目标将通过以下方式实现 完成三个具体目标。首先,我们将表征八种材料的材料和机械性能 候选半关节成形术轴承表面(2 种金属、4 种聚合物、1 种陶瓷和 1 种热解碳) 标准台式机械测试(粗糙度、润湿性、模量、硬度和磨损测试) 皮质骨)。在第二部分中,我们将描述每个候选者的软骨承载性能 通过在关节运动模拟生物摩擦计中对牛软骨塞进行磨损测试,使用 蛋白聚糖/糖胺聚糖 (PG/GAG) 和羟脯氨酸作为软骨基质降解和 活/死测定作为细胞损伤的衡量标准。在第三部分中,我们将测试目标 1 和 2 中的 8 种材料中的四种 作为尤卡坦半岛小型猪新型单间室胫骨半关节置换术模型中的支撑面,测量 软骨损伤(宏观和微观)、滑膜炎症、软骨厚度和骨赘 52周形成。最后,我们将开发一个统计模型,其中目标 1 和 2 的数据可以 用于预测目标 3 的结果。本提案中概述的工作将产生一个模型,其中台式和 离体测试可以预测软骨对半关节置换术的反应。该项目将提供一个重要的工具 需要加速新的半关节置换术轴承表面的设计、开发和 FDA 批准, 为数百万患有退行性关节疾病的患者带来了显着的益处。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph J Crisco其他文献

Joseph J Crisco的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph J Crisco', 18)}}的其他基金

Validation of the Yucatan Minipig as a Preclinical Model for Wrist Bone Arthroplasty
尤卡坦小型猪作为腕骨关节置换术临床前模型的验证
  • 批准号:
    10574928
  • 财政年份:
    2023
  • 资助金额:
    $ 73.05万
  • 项目类别:
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
  • 批准号:
    10839518
  • 财政年份:
    2023
  • 资助金额:
    $ 73.05万
  • 项目类别:
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
  • 批准号:
    10367144
  • 财政年份:
    2022
  • 资助金额:
    $ 73.05万
  • 项目类别:
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
  • 批准号:
    10610317
  • 财政年份:
    2022
  • 资助金额:
    $ 73.05万
  • 项目类别:
Pre-Clinical Development of an Instrumented Trapezium Carpal Bone
仪器化梯形腕骨的临床前开发
  • 批准号:
    10132242
  • 财政年份:
    2020
  • 资助金额:
    $ 73.05万
  • 项目类别:
Pilot Projects Program
试点项目计划
  • 批准号:
    10263339
  • 财政年份:
    2017
  • 资助金额:
    $ 73.05万
  • 项目类别:
Pilot Projects Program
试点项目计划
  • 批准号:
    10019395
  • 财政年份:
    2017
  • 资助金额:
    $ 73.05万
  • 项目类别:
1st International Thumb Osteoarthritis Workshop (ITOW)
第一届国际拇指骨关节炎研讨会(ITOW)
  • 批准号:
    8652117
  • 财政年份:
    2013
  • 资助金额:
    $ 73.05万
  • 项目类别:
Motion-Specific Toy Controllers for Upper Extremity Rehabilitation in Children
用于儿童上肢康复的运动专用玩具控制器
  • 批准号:
    8385119
  • 财政年份:
    2012
  • 资助金额:
    $ 73.05万
  • 项目类别:
Motion-Specific Toy Controllers for Upper Extremity Rehabilitation in Children
用于儿童上肢康复的运动专用玩具控制器
  • 批准号:
    8511423
  • 财政年份:
    2012
  • 资助金额:
    $ 73.05万
  • 项目类别:

相似国自然基金

过渡元素和稀土元素共掺杂Ni-Mn-Sn合金定向凝固组织控制及高弹卡制冷疲劳寿命机理研究
  • 批准号:
    52301014
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
原位研究聚变燃料纯化用Pd-Ag合金中Ag对辐照缺陷演化行为的影响及其相互作用机制
  • 批准号:
    12305308
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
热稳定单原子/单原子合金催化剂在富CO2天然气干重整中的催化及原位演化研究
  • 批准号:
    22372138
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超弹形状记忆合金丝网络嵌入式张拉整体阵列监测与承载一体结构研究
  • 批准号:
    52375285
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高性能复杂铝合金构件半固态触变-固态塑变复合成形机制
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:

相似海外基金

Deciphering the relationship between bioresorbable magnesium alloy corrosion and the inflammatory microenvironment of the neotinima
解读生物可吸收镁合金腐蚀与新生细胞炎症微环境之间的关系
  • 批准号:
    10580115
  • 财政年份:
    2023
  • 资助金额:
    $ 73.05万
  • 项目类别:
Chip-Scale Intraoperative Optical Navigation with Immunotargeted Upconverting Nanoparticles
使用免疫靶向上转换纳米颗粒的芯片级术中光学导航
  • 批准号:
    10743477
  • 财政年份:
    2023
  • 资助金额:
    $ 73.05万
  • 项目类别:
Bioresorbable Zinc Staples for Anastomoses in the Digestive Tract
用于消化道吻合术的生物可吸收锌钉
  • 批准号:
    10372304
  • 财政年份:
    2022
  • 资助金额:
    $ 73.05万
  • 项目类别:
Engineering recombinant lubricin to combat orthopedic infection
工程重组润滑素对抗骨科感染
  • 批准号:
    10355887
  • 财政年份:
    2022
  • 资助金额:
    $ 73.05万
  • 项目类别:
Anti-biofilm laser-mediated photothermal ablation via complex noble metal nanostructures
通过复杂的贵金属纳米结构进行抗生物膜激光介导的光热烧蚀
  • 批准号:
    10625065
  • 财政年份:
    2022
  • 资助金额:
    $ 73.05万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了