Secretagogue and Gi/o-GPCR signaling through the islet Na+/K+-ATPase in health and diabetes
健康和糖尿病中通过胰岛 Na /K -ATP 酶的促分泌素和 Gi/o-GPCR 信号传导
基本信息
- 批准号:10717045
- 负责人:
- 金额:$ 50.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-24 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AblationAnimal Disease ModelsBeta CellCell membraneCell physiologyCellsComplexCoupledCyclic AMP-Dependent Protein KinasesD CellsDataData SetDiabetes MellitusExposure toFunctional disorderG Protein-Coupled Receptor SignalingG-Protein-Coupled ReceptorsGene ExpressionGenesGlucoseGoalsHealthHigh Fat DietHomeostasisHormone secretionHumanInflammationInsulinInsulin ReceptorInsulin ResistanceIon ChannelIslet CellIslets of LangerhansK ATPaseKnowledgeLaboratory FindingMediatingMembrane PotentialsMetabolic stressMusNon-Insulin-Dependent Diabetes MellitusParacrine CommunicationPathway interactionsPatientsPhosphorylationPhysiologicalProtein Tyrosine KinaseProteinsPumpReactive Oxygen SpeciesReceptor InhibitionReceptor SignalingRegulationResearch Project GrantsRoleSignal TransductionSomatostatinStressTestingTimeTissuesTransgenic MiceWorkblood glucose regulationcytokinediabetes pathogenesisdiabeticdiabetogenicglycemic controlinhibitorinsightinsulin receptor tyrosine kinaseinsulin secretioninsulin signalingisletknock-downnew therapeutic targetpharmacologicprotein complexreceptorresponsesrc-Family Kinasestherapeutic targettranscriptome sequencingtype I and type II diabetesvoltage
项目摘要
Project Summary
Islet glucose-stimulated insulin and somatostatin (SST) secretion are perturbed in patients with type-2 diabetes
(T2D) and in animal models of the disease, which contributes to disrupted glucose homeostasis. It is generally
accepted that secretagogues stimulate hormone secretion from -cells and -cells in response to elevated intra-
cellular Ca2. However, the mechanisms that control inhibition of islet Ca2+ handling via Gi/o-coupled receptors
(Gi/o-GPCRs) and how they are altered in T2D are largely unknown. Data from our lab finds that Gi/o-GPCRs
reduce islet Ca2+ entry via Src tyrosine kinase-mediated activation of Na+/K+-ATPase (NKA), which
hyperpolarizes membrane potential (Δψp) and limits insulin secretion. Further data show that Protein kinase A
(PKA) activation by Gs-coupled receptors inhibits islet NKA activity and stimulates Ca2+ entry. Moreover, we find
that islet SST provides paracrine signaling that slows glucose-stimulated -cell Ca2+ oscillations via oscillations
in NKA activity, which depends on the action of Src tyrosine kinase and PKA. Finally, our preliminary data provide
the first evidence that diabetic conditions diminish islet NKA activity, which contributes to perturbations in glucose
and GPCR control of Ca2+ handling. Based on these exciting preliminary data, the overall objective of this pro-
posal is to elucidate how islet NKA is controlled and becomes disrupted during the pathogenesis of diabetes.
This project will test the central hypothesis that that islet NKA activation by tyrosine kinases limits Ca2+ entry and
hormone secretion through Δψp hyperpolarization; whereas, PKA inhibition of islet NKAs enhances Ca2+ entry
and hormone secretion by depolarizing Δψp. The rationale that underlies this project is that understanding sig-
naling that integrates NKA modulation of islet cell Ca2+ handling and hormone secretion will expose novel thera-
peutic targets for restoring glucose-stimulated hormone secretion in T2D. This project will be accomplished with
the following two specific aims: 1) Determine the mechanisms regulating NKA control of β-cell function in health
and diabetes; and 2) Determine how NKA modulates -cell function and dysfunction. Under the first aim, trans-
genic mice with -cell ablation of the - - and -subunits of the NKA complex subunits as well as human -cells
with knockdown of NKA - - and -subunits will be utilized to assess the roles of NKA during secretagogue and
Gi/o-GPCR modulation of -cell Ca2+ handling and insulin secretion. Aim1 will also determine how diabetic con-
ditions impact NKA signaling and insulin secretion. Under the second aim, NKA control of -cell Ca2+ handling
and function will be determined in mice with -cell specific ablation of NKA - - and -subunits or in human
pseudoislets with -cell specific knockdown of NKA - - and -subunits. Furthermore, Aim2 will determine how
reduced NKA function in -cells under the stressful conditions associated with diabetes contributes to -cell
dysfunction. This project is significant because it is expected to illuminate mechanisms that alter -cell and -cell
Ca2+ handling and disrupt islet hormone secretion in T2D. Moreover, this project plans to identify potential phar-
macological strategies for normalizing islet hormone secretion and reducing islet dysfunction in T2D.
项目概要
2 型糖尿病患者的胰岛葡萄糖刺激胰岛素和生长抑素 (SST) 分泌受到干扰
(T2D) 和该疾病的动物模型中,这会破坏葡萄糖稳态。
公认促分泌剂刺激 细胞和 细胞的激素分泌,以响应体内升高的反应
然而,通过 Gi/o 偶联受体控制抑制胰岛 Ca2+ 处理的机制。
(Gi/o-GPCR) 以及它们在 T2D 中如何改变在很大程度上是未知的。我们实验室的数据发现 Gi/o-GPCR。
通过 Src 酪氨酸激酶介导的 Na+/K+-ATPase (NKA) 激活减少胰岛 Ca2+ 进入,
进一步的数据表明,蛋白激酶 A 使膜电位 (Δψp) 超极化并限制胰岛素分泌。
Gs 偶联受体 (PKA) 激活可抑制胰岛 NKA 活性并刺激 Ca2+ 进入。
胰岛 SST 提供旁分泌信号,通过振荡减缓葡萄糖刺激的 细胞 Ca2+ 振荡
NKA 活性取决于 Src 酪氨酸激酶和 PKA 的作用。最后,我们提供了初步数据。
第一个证据表明糖尿病会降低胰岛 NKA 活性,从而导致血糖波动
和 GPCR 对 Ca2+ 处理的控制 基于这些令人兴奋的初步数据,该项目的总体目标是
posal 的目的是阐明胰岛 NKA 在糖尿病发病过程中如何受到控制和破坏。
该项目将测试中心假设,即酪氨酸激酶激活胰岛 NKA 限制 Ca2+ 进入并
通过 Δψp 超极化分泌激素;而 PKA 抑制胰岛 NKA 可增强 Ca2+ 的进入;
通过去极化 Δψp 和激素分泌该项目的基本原理是理解信号。
整合 NKA 对胰岛细胞 Ca2+ 处理和激素分泌的调节的 naling 将揭示新的治疗方法
该项目将通过恢复 T2D 中葡萄糖刺激的激素分泌来实现。
以下两个具体目标: 1) 确定健康中 NKA 控制 β 细胞功能的调节机制
和糖尿病;以及 2) 确定 NKA 如何调节 细胞功能和功能障碍。
NKA 复合体亚基的 - - 和 - 亚基以及人类 -细胞 的 细胞消融的基因小鼠
随着NKA - - 和- 亚基的敲低,将用于评估NKA 在促分泌素和
Gi/o-GPCR 对 细胞 Ca2+ 处理和胰岛素分泌的调节也将决定糖尿病如何发生。
第二个目标是 NKA 控制 细胞 Ca2+ 处理。
和功能将在具有NKA α- β-和-亚基的细胞特异性消融的小鼠或人类中确定
具有 细胞特异性敲除 NKA - - 和 - 亚基的伪胰岛 此外,Aim2 将确定如何进行。
在与糖尿病相关的压力条件下, 细胞中 NKA 功能的降低有助于 细胞
该项目意义重大,因为它有望阐明改变 细胞和 细胞的机制。
此外,该项目计划确定潜在的药物。
使胰岛激素分泌正常化和减少 T2D 胰岛功能障碍的宏观策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Aaron Jacobson其他文献
David Aaron Jacobson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Aaron Jacobson', 18)}}的其他基金
Molecular Mechanisms Regulating Pancreatic Delta Cell Function and Dysfunction
调节胰腺 Delta 细胞功能和功能障碍的分子机制
- 批准号:
10899152 - 财政年份:2022
- 资助金额:
$ 50.57万 - 项目类别:
Molecular Mechanisms Regulating Pancreatic Delta Cell Function and Dysfunction
调节胰腺 Delta 细胞功能和功能障碍的分子机制
- 批准号:
10597228 - 财政年份:2022
- 资助金额:
$ 50.57万 - 项目类别:
Molecular Mechanisms Regulating Pancreatic Delta Cell Function and Dysfunction
调节胰腺 Delta 细胞功能和功能障碍的分子机制
- 批准号:
10443333 - 财政年份:2022
- 资助金额:
$ 50.57万 - 项目类别:
Two-Pore-Domain Potassium Channels as Novel Targets for Modulating Islet Hormone Secretion
双孔域钾通道作为调节胰岛激素分泌的新靶点
- 批准号:
9979836 - 财政年份:2019
- 资助金额:
$ 50.57万 - 项目类别:
Two-Pore-Domain Potassium Channels as Novel Targets for Modulating Islet Hormone Secretion
双孔域钾通道作为调节胰岛激素分泌的新靶点
- 批准号:
10408705 - 财政年份:2019
- 资助金额:
$ 50.57万 - 项目类别:
2-Pore-Domain K+ Channels as Novel Targets for Modulating Islet Hormone Secretion
2 孔域 K 通道作为调节胰岛激素分泌的新靶点
- 批准号:
9044225 - 财政年份:2013
- 资助金额:
$ 50.57万 - 项目类别:
2-pore-domain K+ channels as novel targets for modulating islet hormone secretion
2孔域K通道作为调节胰岛激素分泌的新靶点
- 批准号:
8690839 - 财政年份:2013
- 资助金额:
$ 50.57万 - 项目类别:
2-pore-domain K+ channels as novel targets for modulating islet hormone secretion
2孔域K通道作为调节胰岛激素分泌的新靶点
- 批准号:
9112994 - 财政年份:2013
- 资助金额:
$ 50.57万 - 项目类别:
2-pore-domain K+ channels as novel targets for modulating islet hormone secretion
2孔域K通道作为调节胰岛激素分泌的新靶点
- 批准号:
8579232 - 财政年份:2013
- 资助金额:
$ 50.57万 - 项目类别:
Pancreatic beta-cell CAMKII signaling under physiological and diabetic conditions
生理和糖尿病条件下的胰腺 β 细胞 CAMKII 信号传导
- 批准号:
8479356 - 财政年份:2012
- 资助金额:
$ 50.57万 - 项目类别:
相似国自然基金
冠状动脉微血管疾病大动物模型中关键分子和心肌血流超声显像新技术研究
- 批准号:
- 批准年份:2020
- 资助金额:297 万元
- 项目类别:重点项目
视神经脊髓炎谱系疾病非人灵长类动物模型构建及表型评价
- 批准号:82071341
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
mTOR信号通路在耳蜗毛细胞发育和存活中的调控作用及其机制研究
- 批准号:81900937
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
糖脂代谢紊乱疾病灵长类动物模型构建与DNA/RNA编辑介导的基因治疗方法开发
- 批准号:91957122
- 批准年份:2019
- 资助金额:82.0 万元
- 项目类别:重大研究计划
神经退行性疾病大动物模型治疗
- 批准号:81922026
- 批准年份:2019
- 资助金额:130 万元
- 项目类别:优秀青年科学基金项目
相似海外基金
Investigating the role of CSF production and circulation in aging and Alzheimer's disease
研究脑脊液产生和循环在衰老和阿尔茨海默病中的作用
- 批准号:
10717111 - 财政年份:2023
- 资助金额:
$ 50.57万 - 项目类别:
Tumor susceptibility gene 101, a new microglial therapy candidate for Alzheimer’s disease to prevent cognitive decline
肿瘤易感基因 101,一种新的小胶质细胞疗法候选药物,用于治疗阿尔茨海默病,可预防认知能力下降
- 批准号:
10710931 - 财政年份:2023
- 资助金额:
$ 50.57万 - 项目类别:
The role of brain border-associated macrophages in aging and cerebral amyloid angiopathy
脑边界相关巨噬细胞在衰老和脑淀粉样血管病中的作用
- 批准号:
10551329 - 财政年份:2022
- 资助金额:
$ 50.57万 - 项目类别:
Microbial dysbiosis as a driver of neuroinflammation and pathology in Alzheimer's disease
微生物失调是阿尔茨海默病神经炎症和病理的驱动因素
- 批准号:
10370667 - 财政年份:2022
- 资助金额:
$ 50.57万 - 项目类别:
The Role of Activin-like kinase 5 (ALK5) for maintaining microglia and astrocyte homeostasis and activation
激活素样激酶 5 (ALK5) 在维持小胶质细胞和星形胶质细胞稳态和激活中的作用
- 批准号:
10388033 - 财政年份:2022
- 资助金额:
$ 50.57万 - 项目类别: