Function and regulation of the reductive stress response
还原应激反应的功能和调节
基本信息
- 批准号:10717394
- 负责人:
- 金额:$ 30.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:26S proteasomeAddressAffectAgingBiochemicalCardiomyopathiesCell CycleCell Cycle ProgressionCell Cycle RegulationCell DeathCell SurvivalCell divisionCellsCollaborationsComplementCyclin D1CytoplasmDataDevelopmentDevelopmental Delay DisordersDiabetes MellitusDiseaseDropsElectron TransportEnsureEnvironmentEnzymesExcisionFoundationsGatekeepingGeneticGoalsGrowth FactorHeartHomeostasisImmune responseImmune signalingInflammatoryIon ChannelMalignant NeoplasmsMediatingMetabolicMetabolic ControlMetabolic DiseasesMetabolismMethodsMitochondriaMitochondrial ProteinsModalityModelingModificationMutationNerve DegenerationNeurodegenerative DisordersOrganellesOuter Mitochondrial MembraneOutputOxidation-ReductionOxidative PhosphorylationPathologicPathologyPathway interactionsPatientsPhysiologicalPlayPopulationProductionProliferatingProtacProteinsReactionReactive Oxygen SpeciesRegulationReplication InitiationRoleRunningSensorySignal PathwaySignal TransductionSourceStressSurfaceTOM translocaseTestingTherapeuticTissuesViralWorkbiological adaptation to stresscellular targetingcombatgain of function mutationgenetic analysishuman diseaseinhibitorinnovationneuron developmentnovelnovel therapeuticsoxidationpharmacologicpreservationpreventprogramsprotein degradationprotein misfoldingrecruitrepairedresponsesensortransmission processtumorigenesisubiquitin-protein ligase
项目摘要
PROJECT SUMMARY
Mitochondria are essential organelles that supply cells with ATP and metabolic building blocks, but also play key
roles as signaling hubs that orchestrate the immune response or cell survival. Mutations in mitochondrial proteins
impede development and cause diseases, such as neurodegeneration, and a decline in mitochondrial activity is
considered a hallmark of aging. To prevent such consequences, cells employ conserved signaling pathways that
detect and alleviate mitochondrial dysregulation. It is a major goal of this proposal to dissect the regulation of a
mitochondrial signaling pathway, the reductive stress response, which safeguards activation of the electron
transport chain (ETC) through sensing an invariant ETC byproduct, reactive oxygen species (ROS).
The reductive stress response is built on a Cys redox switch: in healthy cells, Cys residues in FNIP1 are
oxidized, which stabilizes this protein and allows it to downregulate ETC activity. When cells run out of ROS,
however, the FNIP1 Cys residues become reduced and FNIP1 is recognized by the E3 ligase CUL2FEM1B. The
subsequent ubiquitylation and proteasomal degradation of FNIP1 removes this mitochondrial gatekeeper to re-
activate the ETC and re-supply cells with ROS. FNIP1 and CUL2FEM1B are therefore the sensory module of the
reductive stress response. Importantly, mutations in FEM1B that hyperactivate this E3 ligase cause syndromic
developmental delay, showing that tissue formation and homeostasis require tight regulation of the reductive
stress response.
This proposal will dissect three crucial modes of regulation that ensure accurate reductive stress signaling.
We will first investigate spatial control of reductive stress signaling. As with all ubiquitylation reactions, FNIP1
modification by CUL2FEM1B takes places in the cytoplasm, yet how cells can modulate the oxidation state of the
critical FNIP1 Cys residues in this already reducing environment is unclear. We found that substrate and enzyme
of the reductive stress response are anchored on the outer mitochondrial membrane via the TOM complex, a
channel that connects the oxidative mitochondrial intermembrane space with the reducing cytoplasm. In our first
aim, we will dissect how this localization impacts reductive stress signaling. We expect that this work will reveal
a novel function of a membrane channel as an E3 ligase co-adaptor. Moreover, it will likely allow us to pinpoint
the source of ROS that mediate reductive stress signaling, thereby revealing a sought-after physiological role for
ROS in signaling.
We will next focus on the regulation of reductive stress signaling by the cell cycle. ROS have long been
suggested to control cell division, and we had indeed found that hyperactivation of CUL2FEM1B inhibits proliferation.
This result implied that ROS control the cell cycle via the reductive stress response. In line with this notion, we
identified the cell cycle regulator RNF187, which promotes cell cycle progression downstream of growth factor
signaling, as an inhibitor of CUL2FEM1B. Our preliminary data suggest that RNF187 and CUL2FEM1B collaborate to
restrict another E3 ligase, AMBRA1, which drives cyclin D degradation and thereby prevents initiation of DNA
replication. In our second aim, we will dissect the mechanistic underpinnings of this E3 ligase crosstalk to reveal
how ROS signaling is integrated into the cell cycle program. We expect this work to explain how redox stress
can its exert negative consequences onto development or onto tissue homeostasis during tumorigenesis.
While our first aims address physiological modes of regulation, we will finally develop methods to exert
pharmacological control over reductive stress signaling. As the reductive stress response tunes the ETC,
activating the reductive stress E3 ligase CUL2FEM1B provides us with a unique opportunity to increase ETC output
in pathologies driven by mitochondrial decline or inhibition. Moreover, because CUL2FEM1B acts on mitochondrial
surfaces, compounds that target this E3 ligase could be converted into localized proteolysis-targeting chimera
for more efficient and more specific focused degradation of pathological proteins. In our last aim, we will build
on our discovery of compounds that displace protein inhibitors from CUL2FEM1B,, thereby activating both FNIP1
degradation and ETC function. This work will lay the foundation for mitochondria-associated protein degradation
as a new modality to provide therapeutic benefit during aging or in neurodegenerative disease.
Our proposal takes an integrated genetic, biochemical, and pharmacological approach to dissect the
regulation of the reductive stress response as a conserved mitochondrial stress response. This work will reveal
fundamental principles of redox signaling and may lead to the development of a new therapeutics that could
benefit patients of neurodegenerative diseases that currently have few, if any, treatment options.
项目概要
线粒体是为细胞提供 ATP 和代谢构件的重要细胞器,同时也发挥着关键作用
作为协调免疫反应或细胞存活的信号枢纽。线粒体蛋白质突变
阻碍发育并导致疾病,例如神经退行性变,线粒体活性下降
被认为是衰老的标志。为了防止这种后果,细胞采用保守的信号传导途径
检测并缓解线粒体失调。该提案的一个主要目标是剖析
线粒体信号通路,还原应激反应,保护电子的激活
通过感测不变的 ETC 副产物活性氧 (ROS) 来控制传输链 (ETC)。
还原应激反应建立在 Cys 氧化还原开关的基础上:在健康细胞中,FNIP1 中的 Cys 残基
氧化,从而稳定该蛋白质并使其能够下调 ETC 活性。当细胞耗尽ROS时,
然而,FNIP1 Cys 残基减少,并且 FNIP1 被 E3 连接酶 CUL2FEM1B 识别。这
随后 FNIP1 的泛素化和蛋白酶体降解去除了这个线粒体看门人以重新
激活 ETC 并为细胞重新供应 ROS。因此,FNIP1 和 CUL2FEM1B 是传感器的传感模块
还原应激反应。重要的是,FEM1B 的突变使这种 E3 连接酶过度激活,从而导致综合征
发育迟缓,表明组织形成和体内平衡需要严格调节还原性
应激反应。
该提案将剖析三种关键的调节模式,以确保准确的还原应激信号。
我们将首先研究还原应激信号的空间控制。与所有泛素化反应一样,FNIP1
CUL2FEM1B 的修饰发生在细胞质中,但细胞如何调节 CUL2FEM1B 的氧化态
在这种已经还原的环境中,关键的 FNIP1 Cys 残留物尚不清楚。我们发现底物和酶
还原应激反应的一部分通过 TOM 复合物锚定在线粒体外膜上,
连接氧化线粒体膜间空间与还原细胞质的通道。在我们的第一个
目标是,我们将剖析这种定位如何影响还原应激信号。我们期望这项工作能够揭示
膜通道作为 E3 连接酶协同适配器的新功能。此外,它可能会让我们查明
介导还原应激信号传导的 ROS 来源,从而揭示了其广受追捧的生理作用
ROS在信号传导中的作用。
接下来我们将重点关注细胞周期对还原应激信号的调节。 ROS 长期以来
建议控制细胞分裂,我们确实发现 CUL2FEM1B 的过度激活会抑制增殖。
这一结果表明ROS通过还原应激反应控制细胞周期。本着这个理念,我们
确定了细胞周期调节因子 RNF187,它促进生长因子下游的细胞周期进程
信号传导,作为 CUL2FEM1B 的抑制剂。我们的初步数据表明 RNF187 和 CUL2FEM1B 合作
限制另一种 E3 连接酶 AMBRA1,该酶驱动细胞周期蛋白 D 降解,从而阻止 DNA 的起始
复制。在我们的第二个目标中,我们将剖析这种 E3 连接酶串扰的机制基础,以揭示
ROS 信号如何整合到细胞周期程序中。我们希望这项工作能够解释氧化还原应激如何
它会对肿瘤发生过程中的发育或组织稳态产生负面影响。
虽然我们的首要目标是解决生理调节模式,但我们最终将开发方法来发挥作用
对还原应激信号的药理学控制。当还原应激反应调整 ETC 时,
激活还原应力 E3 连接酶 CUL2FEM1B 为我们提供了增加 ETC 输出的独特机会
由线粒体衰退或抑制引起的病理。此外,由于 CUL2FEM1B 作用于线粒体
表面,靶向该 E3 连接酶的化合物可以转化为局部蛋白水解靶向嵌合体
更有效、更具体地降解病理蛋白。在我们的最后一个目标中,我们将建立
我们发现了可以取代 CUL2FEM1B 蛋白抑制剂的化合物,从而激活 FNIP1
降解和ETC功能。这项工作将为线粒体相关蛋白降解奠定基础
作为一种在衰老或神经退行性疾病期间提供治疗益处的新方式。
我们的建议采用综合遗传、生化和药理学方法来剖析
还原应激反应作为保守的线粒体应激反应的调节。这部作品将揭示
氧化还原信号传导的基本原理,可能会导致新疗法的开发
使目前几乎没有治疗选择(如果有的话)的神经退行性疾病患者受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael P Rape其他文献
Michael P Rape的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael P Rape', 18)}}的其他基金
Dissecting Mechanisms of Ubiquitination and Deubiquitination in Cell Cycle Contro
剖析细胞周期控制中泛素化和去泛素化的机制
- 批准号:
8593301 - 财政年份:2008
- 资助金额:
$ 30.23万 - 项目类别:
Dissecting Mechanisms of Ubiquitination and Deubiquitination in Cell Cycle Contro
剖析细胞周期控制中泛素化和去泛素化的机制
- 批准号:
8440056 - 财政年份:2008
- 资助金额:
$ 30.23万 - 项目类别:
Dissecting mechanisms of ubiquitination and deubiquitination in cell cycle contro
剖析细胞周期控制中泛素化和去泛素化的机制
- 批准号:
7676844 - 财政年份:2008
- 资助金额:
$ 30.23万 - 项目类别:
Dissecting mechanisms of ubiquitination and deubiquitination in cell cycle contro
剖析细胞周期控制中泛素化和去泛素化的机制
- 批准号:
7350793 - 财政年份:2008
- 资助金额:
$ 30.23万 - 项目类别:
Dissecting mechanisms of ubiquitination and deubiquitination in cell cycle contro
剖析细胞周期控制中泛素化和去泛素化的机制
- 批准号:
7847414 - 财政年份:2008
- 资助金额:
$ 30.23万 - 项目类别:
Dissecting mechanisms of ubiquitination and deubiquitination in cell cycle contro
剖析细胞周期控制中泛素化和去泛素化的机制
- 批准号:
8102982 - 财政年份:2008
- 资助金额:
$ 30.23万 - 项目类别:
Ubiquitin-dependent mechanisms of tissue-specific cell cycle control
组织特异性细胞周期控制的泛素依赖性机制
- 批准号:
7431182 - 财政年份:2007
- 资助金额:
$ 30.23万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Investigations into ubiquitin binding proteins using structure guided reactivity
使用结构引导反应性研究泛素结合蛋白
- 批准号:
10538227 - 财政年份:2022
- 资助金额:
$ 30.23万 - 项目类别:
Investigations into ubiquitin binding proteins using structure guided reactivity
使用结构引导反应性研究泛素结合蛋白
- 批准号:
10677607 - 财政年份:2022
- 资助金额:
$ 30.23万 - 项目类别:
Investigations into ubiquitin binding proteins using structure guided reactivity
使用结构引导反应性研究泛素结合蛋白
- 批准号:
10677607 - 财政年份:2022
- 资助金额:
$ 30.23万 - 项目类别:
Cell Type and Regional Vulnerability in Frontotemporal Dementia
额颞叶痴呆的细胞类型和区域脆弱性
- 批准号:
10292573 - 财政年份:2021
- 资助金额:
$ 30.23万 - 项目类别:
Identification of F-Box Proteins in Toxoplasma
弓形虫中 F-Box 蛋白的鉴定
- 批准号:
9974899 - 财政年份:2020
- 资助金额:
$ 30.23万 - 项目类别: