A Single Entity Method for Controlled Nucleation and Crystal Growth

控制成核和晶体生长的单一实体方法

基本信息

  • 批准号:
    10720470
  • 负责人:
  • 金额:
    $ 36.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

The structures of biomacromolecules at atomic resolution (< 2.0-2.5 Å) are of enormous importance to understand their physiological functions and roles in diseases. An exemplary critical need of high atomic resolution is to resolve the location of proton/hydrogen which plays vital roles in various biological processes. Deuteration renders neutron scattering techniques unique advantages in high contrast (signal/background) to locate D/H. Like X-ray crystallography which has contributed majority of known biomolecule structures, high quality single crystals are the prerequisites for both X-ray and neutron data collection. It is worth mentioning that despite the recent progresses in electron microscopy techniques, true atomic resolution remains a formidable challenge to achieve. Lower resolution structures are associated with ambiguity and could mislead basic biomedical research as well as drug design/development applications. With the understanding on the fundamental limitations and technical hurdles associated with currently adopted ensemble-based methods, we propose to develop a single-entity method (named NanoAC) which will offer unprecedented capability to synthesize crystals one at a time, under real-time monitoring and with predictive crystal quality. A single nanotip will be employed to spatially confine supersaturation as the sole nucleation site. Electroanalytical and optical methods will monitor the whole crystallization process in real-time to capture quantitative signatures for the nucleation and crystal growth at single entity resolutions. Those signatures will enable active controls in kinetic transitions, and be quantitatively correlated with its diffraction quality and/or crystal habits. The insights will inform crystal synthesis such that nucleation kinetics and growth rates of each individual crystal will be finetune to improve crystal quality and to tune crystal size/habits. Prototype soluble proteins, nucleic acids and membrane proteins will be used as defined in this early-stage technology development program. The new toolbox, once established, will provide paradigm-shift capabilities to improve the crystal quality in diffraction and size/habit controls, to tackle challenging material systems currently not-crystallizable, and also feature high efficiency in time and/or materials. The overarching goal will be pursued through three interrelated aims. Aim 1 will establish real-time monitoring signatures for the generalization of NanoAC to crystallize soluble biomacromolecules and complexes. Aim 2 will correlate diffraction quality and crystal habits with monitoring signatures. Aim 3 will further develop single nanopipettes as ‘magic wand’ to crystallize membrane proteins.
原子分辨率 (< 2.0-2.5 Å) 的生物大分子结构对于 它们的生理功能和在疾病中的作用是了解高原子的典型关键需求。 分辨率是解决质子/氢的位置,质子/氢在各种生物过程中起着至关重要的作用。 氘化使中子散射技术在高对比度(信号/背景)方面具有独特的优势 定位 D/H,就像 X 射线晶体学一样,它贡献了大多数已知的生物分子结构,高 高质量的单晶是X射线和中子数据采集的先决条件。 尽管电子显微镜技术最近取得了进展,但真正的原子分辨率仍然是一个令人敬畏的问题 较低分辨率的结构与模糊性相关,可能会误导基本原理。 生物医学研究以及药物设计/开发应用。 与当前采用的基于集成的方法相关的基本限制和技术障碍,我们 提议开发一种单一实体方法(称为 NanoAC),它将提供前所未有的能力 在实时监控下一次合成一个晶体,并预测晶体质量。 将用于空间限制过饱和作为唯一的成核位点。 方法将实时监控整个结晶过程,以捕获定量特征 这些特征将使动力学的主动控制成为可能。 转变,并与其衍射质量和/或晶体习惯定量相关。 晶体合成使得每个单独晶体的成核动力学和生长速率将被微调 提高晶体质量并调整晶体尺寸/习性原型可溶性蛋白质、核酸和膜。 蛋白质将按照该早期技术开发计划中的定义使用。 建立,将提供范式转换能力,以提高晶体的衍射质量和尺寸/习惯 控制,以解决目前不可结晶的具有挑战性的材料系统,并且还具有高效率 总体目标将通过目标 1 确定的三个相互关联的目标来实现。 实时监测特征,用于 NanoAC 结晶可溶性生物大分子和 目标 2 将衍射质量和晶体习性与监测特征进一步关联。 开发单个纳米移液器作为“魔杖”来结晶膜蛋白。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gangli Wang其他文献

Gangli Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

IL-17A通过STAT5影响CNS2区域甲基化抑制调节性T细胞功能在银屑病发病中的作用和机制研究
  • 批准号:
    82304006
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
缺血训练通过Astrocyte介导的HIF/Wnt信号转导通路促进脑缺血区域血管重塑的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CmNHX4通过参与叶脉Na+区域化提高印度南瓜地上部耐盐性的机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
lncRNA MIR155HG编码的多肽通过HSC70-HSP90途径调控肾透明细胞癌区域免疫的作用及机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

4D Flow MRI in Assessment of True Severe Low-Gradient Aortic Stenosis
4D Flow MRI 评估真正的严重低梯度主动脉瓣狭窄
  • 批准号:
    10735953
  • 财政年份:
    2023
  • 资助金额:
    $ 36.45万
  • 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
  • 批准号:
    10586534
  • 财政年份:
    2023
  • 资助金额:
    $ 36.45万
  • 项目类别:
SMC macropinocytosis: a novel target in atherosclerotic vascular disease
SMC巨胞饮作用:动脉粥样硬化性血管疾病的新靶点
  • 批准号:
    10735697
  • 财政年份:
    2023
  • 资助金额:
    $ 36.45万
  • 项目类别:
Programmable DNA Nanostructures as Biomedical and Structural Scaffolds
可编程 DNA 纳米结构作为生物医学和结构支架
  • 批准号:
    10711302
  • 财政年份:
    2023
  • 资助金额:
    $ 36.45万
  • 项目类别:
Real-time Volumetric Imaging for Motion Management and Dose Delivery Verification
用于运动管理和剂量输送验证的实时体积成像
  • 批准号:
    10659842
  • 财政年份:
    2023
  • 资助金额:
    $ 36.45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了