The role of brainstem projecting extended amygdala neurons in sudden unexpected death in epilepsy
脑干投射扩展杏仁核神经元在癫痫猝死中的作用
基本信息
- 批准号:10718024
- 负责人:
- 金额:$ 51.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAmygdaloid structureApneaArousalBrain StemBreathingCause of DeathCell NucleusCentral Sleep ApneaCessation of lifeChronicClinicalDBA/1 MouseDataDevelopmentDiseaseElectric StimulationElectrocardiogramElectrocorticogramElectroencephalographyElectrophysiology (science)EpilepsyEvaluationFOS geneFiberFoundationsFunctional disorderFutureGeneticGenetic RecombinationGoalsHumanHypoventilationImpairmentInterventionIntractable EpilepsyLightMapsMedialMediatingMediatorMissionModelingMonitorMusMyocardial dysfunctionNational Institute of Neurological Disorders and StrokeNeurodegenerative DisordersNeuronsNeurosciencesOpioidOpsinOutcomeOutcome StudyOutputPatientsPharmacologic SubstancePhotometryPhysiologic MonitoringPhysiologic pulsePontine structurePopulationPre-Clinical ModelProsencephalonPublic HealthResearchRespiration DisordersRiskRoleSeizuresStructureStructure of terminal stria nuclei of preoptic regionSudden DeathSynapsesSystemTechniquesTestingTimeTranslatingVentilatory DepressionViralWhole Body PlethysmographyWorkaudiogenic seizureclinical translationcritical periodhigh riskimprovedin vivoinnovationmortalitymouse modelnervous system disorderneural circuitneurophysiologyneuroregulationnovelnovel therapeuticsoptogeneticsparabrachial nucleuspatch clamppreventpreventable epilepsyrespiratoryrisk stratificationselective expressionsudden unexpected death in epilepsytool
项目摘要
Sudden unexpected death in epilepsy (SUDEP) is the most common cause of death in patients with refractory
epilepsy. Currently, it is impossible to predict or prevent SUDEP. However, SUDEPs that have occurred in
monitored settings were characterized by hypoventilation and apnea prior to cardiac dysfunction, implicating
seizure-related respiratory dysfunction as a critical factor. Human intracranial data suggests the amygdala as a
forebrain structure that may be important for respiratory control and involved in seizure-related respiratory
dysfunction. Understanding the neural circuit mechanisms involving amygdalar structures that underlies
seizure-related respiratory dysfunction that leads to hypoventilation and death is critical to advancing SUDEP
prevention options, which currently do not exist. Our long-term goal is to identify the neural circuits underlying
seizure-related respiratory dysfunction to predict and prevent sudden death. The main objective of the
proposed project is to delineate brainstem projecting extended amygdalar neurons involved in seizure-related
respiratory dysfunction and arrest. Preliminary data in a mouse model of SUDEP show that the extended
amygdalar structure the bed nucleus of the stria terminalis (BNST) represents a potential mediator underlying
seizure-related respiratory dysfunction. Our hypothesis is that BNST activation during seizures contributes to
seizure-related respiratory dysfunction, respiratory arrest, and death via downstream activation in the
parabrachial nucleus (PBN) of the pons. This hypothesis will be tested via the following specific aims in a
model of SUDEP: (1) Characterize the role of BNST and BNSTPBN activation in respiratory dysfunction in a
model of SUDEP. (2) Determine the effect of acute BNST inhibition on seizure-induced respiratory dysfunction
in a model of SUDEP. In Aim 1, we will use a viral approach to selectively identify and dissect BNST neurons
activated by seizures as well as determine the relationship between BNST activation and respiratory
dysfunction during seizures. In Aim 2, we will use in vivo optogenetic inactivation of the BNST to determine the
critical period of activity for respiratory depression and potential intervention. At the successful completion of
the proposed research, the expected outcomes are characterization of seizure-activated BNST-brainstem
circuitry and the temporal relationship of BNST activation to seizure-related respiratory dysfunction to
determine sufficiency and the timepoint necessary for acute BNST activation in this effect. The proposed
research is conceptually innovative through its focus on BNST circuitry in terms of SUDEP pathophysiology
and technically innovative through the use of cutting-edge systems neuroscience techniques applied to
SUDEP including fiber photometry, virally-mediated Targeted Recombination in Active Populations (TRAP) and
in vivo optogenetics. These results are expected to have a significant impact on our current understanding of
alterations of forebrain respiratory circuits that lead to SUDEP and will provide a strong basis for future
development of novel therapeutics and clinical targets for neuromodulation to prevent SUDEP.
癫痫猝死(SUDEP)是难治性癫痫患者最常见的死亡原因
目前,无法预测或预防 SUDEP,但 SUDEP 已发生在癫痫病中。
监测环境的特点是在心功能不全之前出现通气不足和呼吸暂停,这意味着
癫痫相关的呼吸功能障碍是一个关键因素。人类颅内数据表明杏仁核是一个关键因素。
前脑结构可能对呼吸控制很重要,并参与癫痫相关的呼吸
了解涉及杏仁核结构的神经回路机制。
癫痫相关的呼吸功能障碍会导致通气不足和死亡,这对于推进 SUDEP 至关重要
预防方案目前尚不存在,我们的长期目标是确定潜在的神经回路。
癫痫相关的呼吸功能障碍是预测和预防猝死的主要目标。
拟议的项目是描绘参与癫痫相关的脑干投射扩展杏仁核神经元
SUDEP 小鼠模型的初步数据显示,呼吸功能障碍和呼吸停止。
杏仁核结构终纹床核 (BNST) 代表潜在的介质
我们的假设是癫痫发作期间 BNST 激活会导致癫痫发作相关的呼吸功能障碍。
癫痫相关的呼吸功能障碍、呼吸停止和通过下游激活而死亡
脑桥臂旁核(PBN)将通过以下具体目标进行检验。
SUDEP 模型:(1) 描述 BNST 和 BNSTPBN 激活在呼吸功能障碍中的作用
(2)确定急性BNST抑制对癫痫引起的呼吸功能障碍的影响。
在 SUDEP 模型中,我们将使用病毒方法来选择性识别和剖析 BNST 神经元。
癫痫发作激活以及确定 BNST 激活与呼吸之间的关系
在目标 2 中,我们将使用 BNST 的体内光遗传学失活来确定癫痫发作期间的功能障碍。
呼吸抑制和潜在干预活动的关键时期。
拟议的研究,预期结果是癫痫激活的 BNST 脑干的表征
BNST 激活与癫痫相关呼吸功能障碍的电路和时间关系
确定在此效应中急性 BNST 激活的充分性和所需的时间点。
研究在 SUDEP 病理生理学方面重点关注 BNST 电路,在概念上具有创新性
通过使用尖端系统神经科学技术进行技术创新
SUDEP 包括纤维光度测定、病毒介导的活性群体靶向重组 (TRAP) 和
这些结果预计将对我们目前对光遗传学的理解产生重大影响。
前脑呼吸回路的改变导致 SUDEP 并将为未来提供坚实的基础
开发用于预防 SUDEP 的神经调节治疗小说和临床靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Paul Nobis其他文献
William Paul Nobis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
慢性应激差异化调控杏仁核神经元突触结构的机制研究
- 批准号:81960257
- 批准年份:2019
- 资助金额:33.7 万元
- 项目类别:地区科学基金项目
FMR1NB基因多态性和男性同性恋杏仁核结构和功能的相关性研究
- 批准号:81671357
- 批准年份:2016
- 资助金额:57.0 万元
- 项目类别:面上项目
不同亚型功能性消化不良杏仁核环路的脑功能及结构磁共振成像研究
- 批准号:81671672
- 批准年份:2016
- 资助金额:58.0 万元
- 项目类别:面上项目
视网膜直接投射到杏仁核的神经通路结构和功能研究
- 批准号:31571091
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Assessing the contribution of altered PI3K signaling to breathing abnormalities and sudden death in epilepsy
评估 PI3K 信号传导改变对癫痫呼吸异常和猝死的影响
- 批准号:
10458153 - 财政年份:2022
- 资助金额:
$ 51.24万 - 项目类别:
Assessing the contribution of altered PI3K signaling to breathing abnormalities and sudden death in epilepsy
评估 PI3K 信号传导改变对癫痫呼吸异常和猝死的影响
- 批准号:
10569092 - 财政年份:2022
- 资助金额:
$ 51.24万 - 项目类别: